scholarly journals What can be learnt from full disk X-ray observations of stellar flares?

1987 ◽  
Vol 122 ◽  
pp. 373-374
Author(s):  
J.H.M.M. Schmitt ◽  
H. Fink ◽  
F.R. Harnden

The Einstein Observatory demonstrated the existence of hot envelopes, i.e., stellar coronae, around most classes of normal stars (Vaiana et al. 1981). The coronae of late type stars of spectral type F through M are generally thought to be solar-like, i.e., structured and organised by the magnetic field topology and heated by some process(es) involving magnetic energy. Here the property “solar-like” does not refer to the optical appearance of a star, but rather to the role played by magnetic fields in the outer stellar envelope (Linsky 1985). Since it is difficult to measure magnetic fields on other stars directly, a number of indirect indicators is used in order to infer whether a corona should be considered “solar-like” or not.

2019 ◽  
Vol 622 ◽  
pp. A61 ◽  
Author(s):  
R. Staubert ◽  
J. Trümper ◽  
E. Kendziorra ◽  
D. Klochkov ◽  
K. Postnov ◽  
...  

Cyclotron lines, also called cyclotron resonant scattering features are spectral features, generally appearing in absorption, in the X-ray spectra of objects containing highly magnetized neutron stars, allowing the direct measurement of the magnetic field strength in these objects. Cyclotron features are thought to be due to resonant scattering of photons by electrons in the strong magnetic fields. The main content of this contribution focusses on electron cyclotron lines as found in accreting X-ray binary pulsars (XRBP) with magnetic fields on the order of several 1012Gauss. Also, possible proton cyclotron lines from single neutron stars with even stronger magnetic fields are briefly discussed. With regard to electron cyclotron lines, we present an updated list of XRBPs that show evidence of such absorption lines. The first such line was discovered in a 1976 balloon observation of the accreting binary pulsar Hercules X-1, it is considered to be the first direct measurement of the magnetic field of a neutron star. As of today (end 2018), we list 35 XRBPs showing evidence of one ore more electron cyclotron absorption line(s). A few have been measured only once and must be confirmed (several more objects are listed as candidates). In addition to the Tables of objects, we summarize the evidence of variability of the cyclotron line as a function of various parameters (especially pulse phase, luminosity and time), and add a discussion of the different observed phenomena and associated attempts of theoretical modeling. We also discuss our understanding of the underlying physics of accretion onto highly magnetized neutron stars. For proton cyclotron lines, we present tables with seven neutron stars and discuss their nature and the physics in these objects.


2019 ◽  
Vol 82 ◽  
pp. 365-371
Author(s):  
K. Augustson ◽  
S. Mathis ◽  
A. Strugarek

This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. One such instability is the purely magnetic Tayler instability, which can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations. However, most of the magnetic field configurations observed at the surface of massive stars are non-axisymmetric. Thus, extending earlier studies in spherical geometry, we introduce a formulation for the global change in the potential energy contained in a convectively-stable region for both axisymmetric and non-axisymmetric magnetic fields.


2016 ◽  
Vol 12 (S327) ◽  
pp. 77-81
Author(s):  
S. Candelaresi ◽  
D. I. Pontin ◽  
G. Hornig

AbstractUsing a magnetic carpet as model for the near surface solar magnetic field we study its effects on the propagation of energy injectected by photospheric footpoint motions. Such a magnetic carpet structure is topologically highly non-trivial and with its magnetic nulls exhibits qualitatively different behavior than simpler magnetic fields. We show that the presence of magnetic fields connecting back to the photosphere inhibits the propagation of energy into higher layers of the solar atmosphere, like the solar corona. By applying certain types of footpoint motions the magnetic field topology is is greatly reduced through magnetic field reconnection which facilitates the propagation of energy and disturbances from the photosphere.


Several recent investigations in geophysics and astrophysics have involved a consideration of the hydrodynamics of a fluid which is a good electrical conductor. In this paper one of the problems which seem likely to arise in such investigations is discussed. The fluid is assumed to be incompressible and in homogeneous turbulent motion, and externally imposed electric and magnetic fields are assumed to be absent. The equations governing the interaction of the electromagnetic field and the turbulent motion are set up with the same assumptions as are used to obtain the Maxwell and current flow equations for a metallic conductor. It is shown that the equation for the magnetic field is identical in form with that for the vorticity in a non-conducting fluid; immediate deductions are that lines of magnetic force move with the fluid when the conductivity is infinite, and that the small-scale components of the turbulence have the more powerful effect on the magnetic field. The first question considered is the stability of a purely hydrodynamical system to small disturbing magnetic fields, and it is shown that the magnetic energy of the disturbance will increase provided the conductivity is greater than a critical value determined by the viscosity of the fluid. The rate of growth of magnetic energy is approximately exponential, with a doubling time which can be simply related to the properties of the turbulence. General mechanical considerations suggest that a steady state is reached when the magnetic field has as much energy as is contained in the small-scale components of the turbulence. Estimates of this amount of energy and of the region of the spectrum in which it will lie are given in terms of observable properties of the turbulence.


Author(s):  
Mihye Shin ◽  
Prasheel Lillaney ◽  
Waldo Hinshaw ◽  
Rebecca Fahrig

The key technical innovation needed for close proximity hybrid x-ray/MR (XMR) imaging systems is a new rotating anode x-ray tube motor that can operate in the presence of strong magnetic fields. In order for the new motor design to be optimized between conflicting design requirements, we implemented a numerical model for evaluating the dynamics of the motor. The model predicts the amount of produced torque, rotation speed, and time to accelerate based on the Lorentz force law; the motor is accelerated by the interaction between the magnetic moments of the motor wire loops and an external magnetic field. It also includes an empirical model of bearing friction and electromagnetic force from the magnetic field. Our proposed computational model is validated by experiments using several different magnitudes of external magnetic fields, which averagely shows an agreement within 0.5 % error during acceleration. We are using this model to improve the efficiency and performance of future iterations of the x-ray tube motor.


2020 ◽  
Vol 10 (5) ◽  
pp. 1638 ◽  
Author(s):  
Afiq Azri Zainudin ◽  
Nurul Azhani Yunus ◽  
Saiful Amri Mazlan ◽  
Muhammad Kashfi Shabdin ◽  
Siti Aishah Abdul Aziz ◽  
...  

Cobalt particles have been introduced as a filler due to the advantages of embedding their magnetic and electrical properties in magnetorheological elastomer (MRE). In the present research, the rheology and resistance of MRE are experimentally evaluated. Isotropic and anisotropic MRE samples containing silicone rubber and cobalt particles were fabricated. The magnetic properties of MRE are conducted using a vibrating sample magnetometer (VSM). The morphological aspects of MRE are observed by using field emission scanning electron microscopy (FESEM) and characterized by energy-dispersive X-ray spectroscopy (EDX). Rheological properties under various magnetic field strengths were measured for the magnetic field, strain amplitude, and frequency sweep test by using a parallel-plate rheometer. Subsequently, the resistance of MRE is tested under different applied forces and magnetic fields. The MRE storage modulus depicted an enhancement in field-dependent modulus across all the applied magnetic fields. The electrical resistance generated from the sample can be manipulated by external magnetic fields and mechanical loads. The conductivity of MRE is due to the existence of cobalt arrangements observed by FESEM. By introducing cobalt as filler and obtaining satisfactory results, the study might open new avenues for cobalt to be used as filler in MRE fabrication for future sensing applications.


1990 ◽  
Vol 139 ◽  
pp. 414-415
Author(s):  
Hitoshi Hanami

X-ray observations have demonstrated that the intergalactic medium in many clusters (cf. Coma, Perseus) contains a thin, hot plasma that may be produced by the accretion process in the gravitational potential of clusters with radiative cooling; this is usually called “cooling flows” (Fabian, Nulsen, and Canizares 1984; Sarazin 1986). On the other hand, the existence of radio halos in some clusters has been reported (Coma: Jaffe, Perola, and Valentijn 1976; A401: Roland et al. 1981). In addition, many elliptical galaxies in the center of clusters are also strong synchrotron radio sources. These radio emissions provide evidence for large amounts of relativistic electrons associated with the active phenomena in or around these galaxies and clusters. We can estimate the values or limits on the magnetic field in the cluster from the limits on the inverse Compton X-ray emission with the synchrotron radio emission (cf. Jaffe 1980). The intracluster field strength Bo is roughly 1 μG. It has been suggested that the influence of cosmic rays and magnetic fields is important for the properties and dynamics of the intercluster medium (Böhringer and Morfill 1988; Soker and Sarazin 1989). If cooling flows are real, this inward flow can impede the escape of the cosmic rays from the central galaxies in clusters and enhance the magnetic field. The confinement of the cosmic rays and the magnetic field in the center of clusters affects the gas of the intracluster medium.


1983 ◽  
Vol 102 ◽  
pp. 397-400
Author(s):  
P.C.H. Martens ◽  
M. Kuperus

A theory for the thermal stability of hot coronal loops is presented, which is based on the resonant electrodynamic heating theory of Ionson (1982) and the evaporation/condensation scenario of Krall and Antiochos (1980). The theory predicts that gradual changes in the length of a loop or in its magnetic field strength can trigger catastrophic changes in the X-ray visibility of the loop, without the need for a change in the magnetic field topology.A natural explanation is thereby given for the observations of X-ray brightenings in loops and loop evacuations with coronal rain.


2009 ◽  
Vol 5 (S264) ◽  
pp. 257-266 ◽  
Author(s):  
Cristina H. Mandrini

AbstractFree energy stored in the magnetic field is the source that powers solar and stellar activity at all temporal and spatial scales. The energy released during transient atmospheric events is contained in current-carrying magnetic fields that have emerged twisted and may be further stressed via motions in the lower atmospheric layers (i.e. loop-footpoint motions). Magnetic reconnection is thought to be the mechanism through which the stored magnetic energy is transformed into kinetic energy of accelerated particles and mass flows, and radiative energy along the whole electromagnetic spectrum. This mechanism works efficiently at scale lengths much below the spatial resolution of even the highest resolution solar instruments; however, it may imply a large-scale restructuring of the magnetic field inferred indirectly from the combined analysis of observations and models of the magnetic field topology. The aftermath of magnetic energy release includes events ranging from nanoflares, which are below our detection limit, to powerful flares, which may be accompanied by the ejection of large amounts of plasma and magnetic field (so called coronal mass ejections, CMEs), depending on the amount of total available free magnetic energy, the magnetic flux density distribution, the magnetic field configuration, etc. We describe key observational signatures of flares and CMEs on the Sun, their magnetic field topology, and discuss how the combined analysis of solar and interplanetary observations can be used to constrain the flare/CME ejection mechanism.


1990 ◽  
Vol 140 ◽  
pp. 163-167
Author(s):  
D. Breitschwerdt ◽  
F.D. Kahn

The magnetic field structure in the swept-up HII shell and the stellar wind region around an early type star is described. It is argued that the field does not become dynamically so important as to prevent self-similar flow. A condition under which reconnexion removes magnetic energy from the bubble is derived. It follows that the process of turbulent mixing between the HII region and the bubble works efficiently enough to cause severe departures from uniform expansion, even in the presence of magnetic fields.


Sign in / Sign up

Export Citation Format

Share Document