scholarly journals Measurements of the changes in angular diameter of Mira variables with pulsation phase

1999 ◽  
Vol 191 ◽  
pp. 145-150
Author(s):  
J. S. Young ◽  
J. E. Baldwin ◽  
R. C. Boysen ◽  
C. A. Haniff ◽  
D. Pearson ◽  
...  

We report the direct detection of cyclic diameter variations in the Mira variable χ Cygni. Interferometric observations made between 1997 July and 1998 September, using the Cambridge Optical Aperture Synthesis Telescope (COAST) indicate periodic changes in the apparent angular diameter with amplitude 45 per-cent of the smallest value.The measurements were made in a 50 nm bandpass centred on 905 nm, which is only moderately contaminated by molecular absorption features. To assess the effects of atmospheric stratification on the apparent diameter measured in this band, we have also measured near-infrared diameters for a sample of five Miras, in both the J-band (1.3 μm) and Wing's (1971) 1.04 μm band, which is expected to isolate essentially pure continuum emission. We present J-band visibility curves which indicate that the intensity profiles of the stars in the sample differ greatly from each other.

2020 ◽  
Vol 499 (4) ◽  
pp. 5915-5931
Author(s):  
Jonathan P Marshall ◽  
Daniel V Cotton ◽  
Peter Scicluna ◽  
Jeremy Bailey ◽  
Lucyna Kedziora-Chudczer ◽  
...  

ABSTRACT The debris disc around HD 172555 was recently imaged in near-infrared polarized scattered light by the Very Large Telescope’s Spectro-Polarimetric High-contrast Exoplanet REsearch instrument. Here we present optical aperture polarization measurements of HD 172555 by the HIgh Precision Polarimetric Instrument (HIPPI), and its successor HIPPI-2 on the Anglo-Australian Telescope. We seek to refine constraints on the disc’s constituent dust grains by combining our polarimetric measurements with available infrared and millimetre photometry to model the scattered light and continuum emission from the disc. We model the disc using the 3D radiative transfer code hyperion, assuming the orientation and extent of the disc as obtained from the SPHERE observation. After correction for the interstellar medium contribution, our multiwavelength HIPPI/-2 observations (both magnitude and orientation) are consistent with the recent SPHERE polarization measurement with a fractional polarization p = 62.4  ±  5.2 ppm at 722.3 nm, and a position angle θ = 67°  ±  3°. The multiwavelength polarization can be adequately replicated by compact, spherical dust grains (i.e. from Mie theory) that are around 1.2 μm in size, assuming astronomical silicate composition, or 3.9 μm, assuming a composition derived from radiative transfer modelling of the disc. We were thus able to reproduce both the spatially resolved disc emission and polarization with a single grain composition model and size distribution.


2021 ◽  
Vol 52 (2) ◽  
pp. 147-167
Author(s):  
Christopher M. Graney

This paper discusses measurements of the apparent diameter and parallax of the star Sirius, made in the early 18th century by Jacques Cassini, and how those measurements were discussed by other writers. Of particular interest is how other writers accepted Cassini’s measurements, but then discussed Sirius and other stars as though they were all the same size as the sun. Cassini’s measurements, by contrast, required Sirius and other stars to dwarf the sun—something Cassini explicitly noted, and something that echoed the ideas of Johannes Kepler more than a century earlier.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2005 ◽  
Vol 620 (2) ◽  
pp. 1140-1150 ◽  
Author(s):  
P. A. Gerakines ◽  
J. J. Bray ◽  
A. Davis ◽  
C. R. Richey

2018 ◽  
Vol 617 ◽  
pp. L2 ◽  
Author(s):  
A. Müller ◽  
M. Keppler ◽  
Th. Henning ◽  
M. Samland ◽  
G. Chauvin ◽  
...  

Context. The observation of planets in their formation stage is a crucial but very challenging step in understanding when, how, and where planets form. PDS 70 is a young pre-main sequence star surrounded by a transition disk, in the gap of which a planetary-mass companion has recently been discovered. This discovery represents the first robust direct detection of such a young planet, possibly still at the stage of formation. Aims. We aim to characterize the orbital and atmospheric properties of PDS 70 b, which was first identified on May 2015 in the course of the SHINE survey with SPHERE, the extreme adaptive-optics instrument at the VLT. Methods. We obtained new deep SPHERE/IRDIS imaging and SPHERE/IFS spectroscopic observations of PDS 70 b. The astrometric baseline now covers 6 yr, which allowed us to perform an orbital analysis. For the first time, we present spectrophotometry of the young planet which covers almost the entire near-infrared range (0.96–3.8 μm). We use different atmospheric models covering a large parameter space in temperature, log g, chemical composition, and cloud properties to characterize the properties of the atmosphere of PDS 70 b. Results. PDS 70 b is most likely orbiting the star on a circular and disk coplanar orbit at ~22 au inside the gap of the disk. We find a range of models that can describe the spectrophotometric data reasonably well in the temperature range 1000–1600 K and log g no larger than 3.5 dex. The planet radius covers a relatively large range between 1.4 and 3.7 RJ with the larger radii being higher than expected from planet evolution models for the age of the planet of 5.4 Myr. Conclusions. This study provides a comprehensive data set on the orbital motion of PDS 70 b, indicating a circular orbit and a motion coplanar with the disk. The first detailed spectral energy distribution of PDS 70 b indicates a temperature typical of young giant planets. The detailed atmospheric analysis indicates that a circumplanetary disk may contribute to the total planetflux.


1994 ◽  
Vol 154 ◽  
pp. 205-210
Author(s):  
Y. Suematsu ◽  
H. Fukushima ◽  
Y. Nishino

Coronal images were taken in the light of the He I 10830 Å line, the 10000 Å continuum, and the Fe XIV 5303 Å line, with the aim of studying the thermal structure of the corona. In addition, spectroscopic observations were made in the violet wavelength region (3760-4060 Å) and near-infrared (10745-10835 Å), to obtain details of physical conditions of the corona, especially of its cool part. The data obtained do not show any distinct cool structures other than ordinary prominences. Some preliminary results concerning the corona and prominence structures are given.


1992 ◽  
Vol 10 (1) ◽  
pp. 71-73 ◽  
Author(s):  
R.G. Marson ◽  
T.R. Bedding ◽  
J.G. Robertson

AbstractThe technique of aperture synthesis is well developed in radio astronomy. When applied to the optical regime, aperture synthesis allows one to partially overcome the blurring effects of the atmosphere and increase the angular resolution of large telescopes to the diffraction limit. MAPPIT (Masked APerture-Plane Interference Telescope) is a multi-element interferometer which operates at the coude focus of the 3.9 m Anglo-Australian Telescope. This instrument has recently been reconfigured to operate in a dispersed mode so that simultaneous observations in a band of wavelengths are possible. We will discuss this instrument’s new mode and present observations of the double star δ Sco and an angular diameter of the previously unresolved red giant β Gru.


2019 ◽  
Vol 626 ◽  
pp. L2 ◽  
Author(s):  
S. Facchini ◽  
E. F. van Dishoeck ◽  
C. F. Manara ◽  
M. Tazzari ◽  
L. Maud ◽  
...  

The large majority of protoplanetary disks have very compact continuum emission (≲15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (∼10 mJy) orbiting the TTauri star CX Tau at a resolution of ∼40 mas, ∼5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of 12CO is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (> 5) strongly points to radial drift, and closely matches the predictions of theoretical models.


2019 ◽  
Vol 625 ◽  
pp. A80 ◽  
Author(s):  
Géza Kovács ◽  
Tamás Kovács

Ground-based observations of the secondary eclipse in the 2MASS K band are presented for the hot Jupiter WASP-121b. These are the first occultation observations of an extrasolar planet that were carried out with an instrument attached to a 1 m class telescope (the SMARTS 1.3 m). We find a highly significant eclipse depth of (0.228 ± 0.023)%. Together with other planet atmosphere measurements, including the Hubble Space Telescope near-infrared emission spectrum, current data support more involved atmosphere models with species producing emission and absorption features, rather than simple smooth blackbody emission. Analysis of the time difference between the primary and secondary eclipses and the durations of these events yields an eccentricity of e = 0.0207 ± 0.0153, which is consistent with the earlier estimates of low or zero eccentricity, but with a smaller error. Comparing the observed occultation depth in the K band with the one derived under the assumption of zero Bond albedo and full heat redistribution, we find that WASP-121b has a deeper observed occultation depth than predicted. Together with the sample of 31 systems with K-band occultation data, this observation lends further support to the idea of inefficient heat transport between the day and night sides for most of the hot Jupiters.


1994 ◽  
Vol 159 ◽  
pp. 5-16 ◽  
Author(s):  
Joel N. Bregman

The general understanding of the continuum emission from AGN has changed from the picture where nonthermal processes were responsible for all of the emission. The current body of observation indicates that there are two types of objects, one being the blazar class (or blazar component), where nearly all of the emission is nonthermal, due primarily to synchrotron and inverse Compton emission. Variability studies indicate that the emitting region decreases with size from the radio through the X-ray region, where the size of the X-ray region is of order a light hour. More than two dozen of these radio-loud AGNs have been detected at GeV energies (one source at TeV energies), for which the radiation mechanism may be inverse Compton mechanism.In the other class, the radio-quiet AGN (component), the emission is almost entirely thermal, with radiation from dust dominating the near infrared to submillimeter region. The optical to soft X-ray emission is often ascribed to black body emission from an opaque accretion disk, but variability studies may not be consistent with expectations. Another attractive model has free-free emission being responsible for the optical to soft X-ray emission. The highest frequencies at which these AGN are detected is the MeV range, and these data should help to determine if this emission is produced in a scattering atmosphere, such as that around an accretion disk, or by another model involving an opaque pair plasma.


Sign in / Sign up

Export Citation Format

Share Document