scholarly journals On the perspectives of using XMM to study fundamental parameters of early-type stars

1999 ◽  
Vol 193 ◽  
pp. 90-91
Author(s):  
Gregor Rauw ◽  
Karel A. van der Hucht ◽  
Rolf Mewe ◽  
Manuel Güdel ◽  
Jean-Marie Vreux ◽  
...  

Although substantial progress has been achieved since the discovery of X-ray emission from early-type stars with the EINSTEIN satellite, several crucial aspects of this phenomenon are still not fully understood. Considerable breakthroughs in this field are expected from observations with the X-ray Multi-Mirror satellite (XMM) due for launch in early 2000. XMM is the second cornerstone mission of the ESA Horizon 2000 science programme (see Lumb et al. 1996 and references therein for an overall description of the satellite). XMM offers a large effective area over a wide range of energies and its instrumentation provides simultaneously non-dispersive spectroscopic imaging (EPIC - European Photon Imaging Camera), medium-resolution dispersive spectroscopy (RGS - Reflection Grating Spectrometer) and optical-UV imaging (OM - Optical Monitor).

1998 ◽  
Vol 188 ◽  
pp. 224-225
Author(s):  
S. Tanaka ◽  
S. Kitamoto ◽  
T. Suzuki ◽  
K. Torii ◽  
M.F. Corcoran ◽  
...  

X-rays from early-type stars are emitted by the corona or the stellar wind. The materials in the surface layer of early-type stars are not contaminated by nuclear reactions in the stellar inside. Therefore, abundance study of the early-type stars provides us an information of the abundances of the original gas. However, the X-ray observations indicate low-metallicity, which is about 0.3 times of cosmic abundances. This fact raises the problem on the cosmic abundances.


2005 ◽  
Vol 160 (2) ◽  
pp. 557-581 ◽  
Author(s):  
B. Stelzer ◽  
E. Flaccomio ◽  
T. Montmerle ◽  
G. Micela ◽  
S. Sciortino ◽  
...  

2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Anatoly S. Miroshnichenko ◽  
Steven Danford ◽  
Sergei V. Zharikov ◽  
Nadine Manset ◽  
Hugo Levato ◽  
...  

AbstractOngoing studies of different groups of stars result in improving our knowledge of their fundamental parameters and evolutionary status. Also, they result in finding new phases of stellar evolution, which require theoretical explanation. At the same time, availability of large telescopes and sensitivity improvement of detectors shift the focus of many observational programs toward fainter and more distant objects. However, there are still many problems in our understanding of details of stellar evolution which can now be solved with small telescopes and observations of bright stars. Approaching these problems implies conducting surveys of large groups of stars and long-term monitoring of individual objects. In this talk, we present the results of recent international programs of photometric and spectral monitoring of several groups of early-type stars. In particular, we discuss the role of binarity in creation of the Be phenomenon and show examples of recently discovered binary systems as well as the problem of refining fundamental parameters of B and A type supergiants. Special attention will be paid to collaboration with the amateur community and use of échelle spectrographs mounted on small telescopes.


2009 ◽  
Vol 5 (H15) ◽  
pp. 273-273
Author(s):  
Ginevra Trinchieri

XMM-Newton is well suited to the study of the X-ray properties of early-type galaxies: the wide energy band allows a characterization of the different components of the X-ray emission in galaxies, separating the gas from the compact source component through their spectral characteristics, and identifying low-luminosity absorbed AGNs; the large field of view allows a proper understanding of the large scale emission, and the separation between the galaxy and the surrounding group. Nonetheless, in spite of the much improved understanding of the X-ray characteristics of this class of sources, much of the original questions on the global X-ray properties of early-type galaxies remain. One in particular: how can we predict how much gas is there in any given galaxy? We have learned that the individual sources are tightly linked to the stellar component, both field stars and relative frequency of globular clusters. We have also learned that the central group galaxies, brighter and more extended, might represent a specific class of early-type galaxies, rather than the population as a whole. Yet we have not learned how to predict, from the stellar properties, how much hot gas a galaxy will have. Even a well selected class of sources, namely early type galaxies in isolation, where we can exclude the influence of the environment, appear to retain different amounts of the hot ISM produced by the stellar population, and display a wide range of Lx for their gaseous component for a relative narrow range of Lb, or mass [measured through LK], as shown by Fig. 1.


Author(s):  
Yanjun Guo ◽  
Jiao Li ◽  
Jianping Xiong ◽  
Jiangdan Li ◽  
Luqian Wang ◽  
...  

Abstract Massive binaries play significant roles in many fields. Identification of massive stars, particularly massive binaries, is of great importance. In this paper, by adopting the technique of measuring the equivalent widths of several spectral lines, we identified 9,382 early-type stars from LAMOST medium-resolution survey and divided the sample into four groups, T1 ($\sim$O-B4), T2 ($\sim$B5), T3 ($\sim$B7), and T4 ($\sim$B8-A). The relative radial velocities $RV_{\rm rel}$ were calculated using the Maximum Likelihood Estimation. The stars with significant changes of $RV_{\rm rel}$ and at least larger than 15.57km s$^{-1}$ were identified as spectroscopic binaries. We found that the observed spectroscopic binary fractions for the four groups are $24.6\%\pm0.5\%$, $20.8\%\pm0.6\%$, $13.7\%\pm0.3\%$, and $7.4\%\pm0.3\%$, respectively. Assuming that orbital period ($P$) and mass ratio ($q$) have intrinsic distributions as $f(P) \propto P^\pi$ (1\textless$P$\textless1000 days) and $f(q) \propto q^\kappa$ (0.1\textless$q$\textless1), respectively, we conducted a series of Monte-Carlo simulations to correct observational biases for estimating the intrinsic multiplicity properties. The results show that the intrinsic binary fractions for the four groups are 68$\%\pm8\%$, 52$\%\pm3\%$, 44$\%\pm6\%$, and 44$\%\pm6\%$, respectively. The best estimated values for $\pi$ are -1$\pm0.1$, -1.1$\pm0.05$, -1.1$\pm0.1$, and -0.6$\pm0.05$, respectively. The $\kappa$ cannot be constrained for groups T1 and T2 and is -2.4$\pm0.3$ for group T3 and -1.6$\pm0.3$ for group T4. We confirmed the relationship of a decreasing trend in binary fractions towards late-type stars. No correlation between the spectral type and the orbital period distribution has been found yet, possibly due to the limitation of observational cadence.


2021 ◽  
Vol 921 (2) ◽  
pp. 145
Author(s):  
Weijia Sun ◽  
Xiao-Wei Duan ◽  
Licai Deng ◽  
Richard de Grijs

Abstract Angular momentum is a key property regulating star formation and evolution. However, the physics driving the distribution of the stellar rotation rates of early-type main-sequence stars is as yet poorly understood. Using our catalog of 40,034 early-type stars with homogeneous v sin i parameters, we review the statistical properties of their stellar rotation rates. We discuss the importance of possible contaminants, including binaries and chemically peculiar stars. Upon correction for projection effects and rectification of the error distribution, we derive the distributions of our sample’s equatorial rotation velocities, which show a clear dependence on stellar mass. Stars with masses less than 2.5 M ⊙ exhibit a unimodal distribution, with the peak velocity ratio increasing as stellar mass increases. A bimodal rotation distribution, composed of two branches of slowly and rapidly rotating stars, emerges for more massive stars (M > 2.5 M ⊙). For stars more massive than 3.0 M ⊙, the gap between the bifurcated branches becomes prominent. For the first time, we find that metal-poor ([M/H] < −0.2 dex) stars only exhibit a single branch of slow rotators, while metal-rich ([M/H] > 0.2 dex) stars clearly show two branches. The difference could be attributed to unexpectedly high spin-down rates and/or in part strong magnetic fields in the metal-poor subsample.


2021 ◽  
Vol 257 (2) ◽  
pp. 22
Author(s):  
Weijia Sun ◽  
Xiao-Wei Duan ◽  
Licai Deng ◽  
Richard de Grijs ◽  
Bo Zhang ◽  
...  

1993 ◽  
Vol 138 ◽  
pp. 507-516 ◽  
Author(s):  
Jeffrey L. Linsky

AbstractConventional wisdom holds that early-type and late-type stars have very different outer atmospheres, because the early-type stars lack deep convective zones. I argue that the magnetic chemically peculiar (CP) stars hotter than about spectral type A2 display many of the activity phenomena seen in the most active late-type stars. In particular, many CP stars are luminous nonthermal radio and coronal x-ray sources like the RS CVn systems. A wind-fed magnetosphere model has been proposed to explain both the nonthermal radio and the x-ray emission. In this model the stellar wind plays the role of a mechanical energy source analogous to the role played by convection in the active late-type stars.


Sign in / Sign up

Export Citation Format

Share Document