The Rotation Curve from A-F Supergiants

1996 ◽  
Vol 169 ◽  
pp. 703-706
Author(s):  
D. M. Peterson ◽  
D. Slowik

The Galactic rotation law provides critical information for estimating the distribution of mass in the Galaxy, for tying the distance of the Sun from the Galactic center to local distance scales, and, if determined over large enough distances, for estimating the total mass of the system and the amount of nonluminous matter present. Interior to the Sun velocities are well defined by observations of the ISM, particularly HI. These techniques are not available for points exterior to the Sun and we must rely on observations of velocities of objects whose distances can be estimated. Notable among these are the Cepheids (Pont et al 1994) and the combination of CO velocities and OB cluster distances (Brand & Blitz 1993) where the two are found to coexist. Adding a new class of objects, particularly bright, relatively common objects to this effort is of importance.

1996 ◽  
Vol 173 ◽  
pp. 175-176
Author(s):  
K.C. Freeman

From their rotation curves, most spiral galaxies appear to have massive dark coronas. The inferred masses of these dark coronas are typically 5 to 10 times the mass of the underlying stellar component. I will review the evidence that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center. However it does allow several other indicators of the total galactic mass out to very large distances. It seems clear that the Galaxy does indeed have a massive dark corona. The data indicate that the enclosed mass within radius R increases like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc. The total galactic mass is at least 12 × 1011M⊙.


1996 ◽  
Vol 169 ◽  
pp. 645-650
Author(s):  
K.C. Freeman

The rotation curves of spiral galaxies indicate that most of them have massive dark coronas, and it seems likely that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center, but it does allow us to use several other indicators of the total galactic mass out to very large distances. I will review some of these indicators. The conclusion is that the Galaxy does indeed have a massive dark corona: the data are consistent with the enclosed mass within radius R increasing like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc, and a total galactic mass of at least 12 × 1011M⊙.


2012 ◽  
Vol 8 (S287) ◽  
pp. 421-422
Author(s):  
Nobuyuki Sakai ◽  
Mareki Honma ◽  
Hiroyuki Nakanishi ◽  
Hirofumi Sakanoue ◽  
Tomoharu Kurayama ◽  
...  

AbstractWe aim to reveal the mass distribution of the Galaxy based on a precise rotation curve constructed using VERA observations. We have been observing Galactic H2O masers with VERA. We here report one of the results of VERA for IRAS 05168+3634. The parallax is 0.532 ± 0.053 mas which corresponds to a distance of 1.88+0.21−0.17 kpc, and the proper motions are (μαcosδ, μδ) = (0.23 ± 1.07, −3.14 ± 0.28) mas yr−1. The distance is significantly smaller than the previous distance estimate of 6 kpc based on a kinematic distance. This drastic change places the source in the Perseus arm rather than in the Outer arm. Combination of the distance and the proper motions with the systemic velocity provides a rotation velocity of 227+9−11 km s−1 at the source assuming Θ0 = 240 km s−1. The result is marginally slower than the rotation velocity at LSR with ~ 1−σ significance, but consistent with previous VLBI results for six sources in the Perseus arm. We also show the averaged disk peculiar motion over the seven sources in the Perseus arm as (Umean, Vmean) = (11 ± 3, −17 ± 3) km s−1. It suggests that the seven sources in the Perseus arm are systematically moving toward the Galactic center, and lag behind the Galactic rotation with more than 3-σ significance.


1970 ◽  
Vol 38 ◽  
pp. 51-60
Author(s):  
J. Einasto ◽  
U. Rümmel

A model for the Andromeda galaxy, M 31, has been derived from the available radio, photometric, and spectroscopic data. The model consists of four components – the nucleus, the bulge, the disc, and the flat component.For all components the following functions have been found: the mass density; the mass-to-light ratio; the velocity dispersions in three perpendicular directions (for the plane of symmetry and the axis of the galaxy); the deviation angle of the major axis of the velocity ellipsoid from the plane of symmetry; the centroid velocity (for the plane of symmetry).Our model differs in two points from the models obtained by other authors: the central concentration of mass is higher (in the nucleus the mass-to-light ratio is about 170), and the total mass of the galaxy (200 × 109 solar masses) is smaller. The differences can be explained by different rotation curves adopted, and by attributing more weight to photometric and spectroscopic data in the case of our model.


1979 ◽  
Vol 84 ◽  
pp. 119-123
Author(s):  
Joseph H. Taylor

Recent pulsar surveys have increased the number of known pulsars to well over 300, and many of them lie at distances of several kpc or more from the sun. The distribution of pulsars with respect to distance from the galactic center is similar to other population I material such as HII regions, supernova remnants, and carbon monoxide gas, but the disk thickness of the pulsar distribution is rather greater, with <|z|>≈350 pc. Statistical analysis suggests that the total number of active pulsars in the Galaxy is a half million or more, and because kinematic arguments require the active lifetimes of pulsars to be ≲5×106 years, it follows that the birthrate required to maintain the observed population is one pulsar every ∼10 years (or less) in the Galaxy.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1693
Author(s):  
Asher Yahalom

The general theory of relativity (GR) is symmetric under smooth coordinate transformations, also known as diffeomorphisms. The general coordinate transformation group has a linear subgroup denoted as the Lorentz group of symmetry, which is also maintained in the weak field approximation to GR. The dominant operator in the weak field equation of GR is thus the d’Alembert (wave) operator, which has a retarded potential solution. Galaxies are huge physical systems with dimensions of many tens of thousands of light years. Thus, any change at the galactic center will be noticed at the rim only tens of thousands of years later. Those retardation effects are neglected in the present day galactic modelling used to calculate rotational velocities of matter in the rims of the galaxy and surrounding gas. The significant differences between the predictions of Newtonian instantaneous action at a distance and observed velocities are usually explained by either assuming dark matter or by modifying the laws of gravity (MOND). In this paper, we will show that, by taking general relativity seriously without neglecting retardation effects, one can explain the radial velocities of galactic matter in the M33 galaxy without postulating dark matter. It should be stressed that the current approach does not require that velocities v are high; in fact, the vast majority of galactic bodies (stars, gas) are substantially subluminal—in other words, the ratio of vc≪1. Typical velocities in galaxies are 100 km/s, which makes this ratio 0.001 or smaller. However, one should consider the fact that every gravitational system, even if it is made of subluminal bodies, has a retardation distance, beyond which the retardation effect cannot be neglected. Every natural system, such as stars and galaxies and even galactic clusters, exchanges mass with its environment, for example, the sun loses mass through solar wind and galaxies accrete gas from the intergalactic medium. This means that all natural gravitational systems have a finite retardation distance. The question is thus quantitative: how large is the retardation distance? For the M33 galaxy, the velocity curve indicates that the retardation effects cannot be neglected beyond a certain distance, which was calculated to be roughly 14,000 light years; similar analysis for other galaxies of different types has shown similar results. We demonstrate, using a detailed model, that this does not require a high velocity of gas or stars in or out of the galaxy and is perfectly consistent with the current observational knowledge of galactic and extra galactic material content and dynamics.


1989 ◽  
Vol 120 ◽  
pp. 416-423
Author(s):  
Bart P. Wakker

For almost three decades neutral hydrogen moving at velocities unexplicable by galactic rotation has been observed. These so-called high-velocity clouds (HVCs) have been invoked as evidence for infall of neutral gas to the galaxy, as manifestations of a galactic fountain, as energy source for the formation of supershells, etc. No general consensus about their origin has presently been reached. However, it is becoming clear that no single model will suffice to explain all HVCs. A number of clouds may consist of material streaming toward the galactic center, as Mirabel (this conference) has advocated for several years, though their origin still remains unclear. A better understanding is mainly hampered by the fact that the distance remains unknown. An overview of the current status of the distance problem is given by van Woerden elsewhere in this volume.


1980 ◽  
Vol 87 ◽  
pp. 213-220 ◽  
Author(s):  
Leo Blitz ◽  
Michel Fich ◽  
Antony A. Stark

The major stumbling block in the determination of a rotation curve beyond the solar circle has been the lack of a suitable set of objects with well defined and independently measured distances and velocities which can be observed to large galactocentric radii. Two things have changed this situation. The first was the realization that essentially all local HII regions have associated molecular material. The second was the acquisition of reliable distances to the stars exciting a sizable number of HII regions at large galactocentric radii (Moffat, FitzGerald, and Jackson 1979). Because the velocity of the associated molecular gas can be measured very accurately by means of radio observations of CO, we have been able to overcome the past difficulties and have measured the rotation curve of the Galaxy to a galactocentric distance of 18 kpc.


1977 ◽  
Vol 45 ◽  
pp. 293-296 ◽  
Author(s):  
J. Palouš

The basic model of our Galaxy, like the Schmidt (1965) model, obeys the density law ρ(R) for the Galaxy based on divers evidence, less or better known from observation. The interpretation of the interstellar hydrogen radio profiles yields the rotation curve and the run of the force component in the radial direction. The Oort constants A, B known from radial velocities and proper motions of nearby stars, the distance from the Sun to the galactic center Roestablished from the distances of RR Lyrae stars, the local density and density gradients in the vicinity of the Sun, known from the star counts, are involved in this basic model of the Galaxy. The r.m.s. velocity component in the z direction yields the approximate mass distribution in this direction. The model surface density is computed by integrating the density along the z direction in the model. The local surface density in the Schmidt model is 114 solar masses per pc2; it depends rather strongly on the assumed density variation in the outer part of the Galaxy.


2007 ◽  
Vol 3 (S248) ◽  
pp. 502-503 ◽  
Author(s):  
M. Shen

AbstractA catalogue of open clusters is used to analyze the Galactic kinematics near the Sun. The Galactic open clusters, which are components of Galactic thin disk, were selected for our analysis. Based on kinematical data for around 270 Galactic open clusters, we found the Galactic rotation curve remains flat near the Sun. We also found Ve = 6.40±3.39 km s−1 inside the solar circle, which shows a weak trend of stars moving toward the Galactic anti-center.


Sign in / Sign up

Export Citation Format

Share Document