scholarly journals Optical Evidence for Plasma Ejections and Waves in the Solar Corona

1974 ◽  
Vol 57 ◽  
pp. 323-332 ◽  
Author(s):  
A. Bruzek

Plasma ejections and waves in the solar corona are almost exclusively flare associated phenomena. Ejections of relatively cool and dense plasma are frequently observed in Hα whereas observations in coronal light (visible, EUV- and X-radiation) are still rather scarce. Occurrence of coronal waves is so far best known from their effects on the Hα chromosphere and, of course, from the production of radio bursts. Only in relatively few cases have observations been made in coronal lines and in coronal continuum by ground based as well as by satellite borne equipment. We may expect, however, that the white light coronagraph and the X-ray telescopes on board of the Skylab will detect quite a number of events in front of the solar disk and high in the solar corona and will considerably increase and improve our imperfect knowledge and understanding of coronal ejections and waves as it is presented in this review.

1980 ◽  
Vol 91 ◽  
pp. 263-277 ◽  
Author(s):  
U. Anzer

If one defines coronal transients as events which occur in the solar corona on rapid time scales (≲ several hours) then one would have to include a large variety of solar phenomena: flares, sprays, erupting prominences, X-ray transients, white light transients, etc. Here we shall focus our attention on the latter two phenomena; solar flares have been discussed at great length in a recent Skylab workshop and IAU Colloqium No. 44 was devoted to the study of prominences. Coronal transients, in the narrower sense, were first seen with the instruments on board of Skylab, both in the optical and the X-ray part of the spectrum.


1980 ◽  
Vol 86 ◽  
pp. 419-433 ◽  
Author(s):  
G. A. Dulk

Optical, radio and X-ray evidence of violent mass motions in the corona has existed for some years but only recently have the form, nature, frequency and implication of the transients become obvious. In this paper I review the observed properties of coronal transients, concentrating on the white-light and radio manifestations. The classification according to speeds seems to be meaningful, with the slow transients having thermal emissions at radio wavelengths and the fast ones non-thermal. I then discuss the possible mechanisms involved in the radio bursts and review the estimates of various forms of energy. It appears that the magnetic energy transported from the Sun by the transient exceeds that of any other form, and that magnetic forces dominate in the dynamics of the motions. The conversion of magnetic energy into mechanical energy, by expansion of the fields, provides a possible driving force for the coronal and interplanetary shock waves.


1977 ◽  
Vol 3 (2) ◽  
pp. 154-157 ◽  
Author(s):  
R. A. Duncan

Soft X-ray photographs of the Sun taken from the manned Skylab satellite (Vaiana et al. 1973) gave, not the earliest, but perhaps the most graphic evidence that the solar corona is patchy. During the Skylab mission (May 1973 to February 1974), the solar corona as usually envisaged covered only 80% of the Sun (Bohlin 1977). The areas lacking a ‘dense’ corona are called coronal holes (Withbroe al. 1971; Waldmeier 1975).


1994 ◽  
Vol 144 ◽  
pp. 135-137
Author(s):  
I. N. Garczyńska ◽  
B. Rompolt ◽  
H. Aurass ◽  
J. T. Burkepile ◽  
B. Cader-Sroka ◽  
...  

AbstractA sequence of structural changes in the low and high corona observed in Hαand white light is investigated in details. Relatively slow Hαmass ejections have been accompanied by X-ray and radio bursts as well as CME. Some interconnections between all these events are analysed.


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
Imre Pozsgai ◽  
Klara Erdöhalmi-Torok

The paintings by the great Hungarian master Mihaly Munkacsy (1844-1900) made in an 8-9 years period of his activity are deteriorating. The most conspicuous sign of the deterioration is an intensive darkening. We have made an attempt by electron beam microanalysis to clarify the causes of the darkening. The importance of a study like this is increased by the fact that a similar darkening can be observed on the paintings by Munkacsy’s contemporaries e.g Courbet and Makart. A thick brown mass the so called bitumen used by Munkacsy for grounding and also as a paint is believed by the art historians to cause the darkening.For this study, paint specimens were taken from the following paintings: “Studio”, “Farewell” and the “Portrait of the Master’s Wife”, all of them are the property of the Hungarian National Gallery. The paint samples were embedded in a polyester resin “Poly-Pol PS-230” and after grinding and polishing their cross section was used for x-ray mapping.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


Sign in / Sign up

Export Citation Format

Share Document