Pelagic species diversity, biogeography, and evolution

Paleobiology ◽  
2000 ◽  
Vol 26 (S4) ◽  
pp. 236-258 ◽  
Author(s):  
Richard D. Norris

Pelagic (open-ocean) species have enormous population sizes and broad, even global, distributions. These characteristics should damp rates of speciation in allopatric and vicariant evolutionary models since dispersal should swamp diverging populations and prevent divergence. Yet the fossil record suggests that rates of evolutionary turnover in pelagic organisms are often quite rapid, comparable to rates observed in much more highly fragmented terrestrial and shallow-marine environments. Furthermore, genetic and ecological studies increasingly suggest that species diversity is considerably higher in the pelagic realm than inferred from many morphological taxonomies.Zoogeographic evidence suggests that ranges of many pelagic groups are much more limited by their ability to maintain viable populations than by any inability to disperse past tectonic and hydrographic barriers to population exchange. Freely dispersing pelagic taxa resemble airborne spores or wind-dispersed seeds that can drift almost anywhere but complete the entire life cycle only in favorable habitats. It seems likely that vicariant and allopatric models for speciation are far less important in pelagic evolution than sympatric or parapatric speciation in which dispersal is not limiting. Nevertheless, speciation can be quite rapid and involve cladogenesis even in cases where morphological data suggest gradual species transitions. Indeed, recent paleoecological and molecular studies increasingly suggest that classic examples of “phyletic gradualism” involve multiple, cryptic speciation events.Paleoceanographic and climatic change seem to influence rates of turnover by modifying surface water masses and environmental gradients between them to create new habitats rather than by preventing dispersal. Changes in the vertical structure and seasonality of water masses may be particularly important since these can lead to changes in the depth and timing of reproduction. Long-distance dispersal may actually promote evolution by regularly carrying variants of a species across major oceanic fronts and exposing them to very different selection pressures than occur in their home range. High dispersal in pelagic taxa also implies that extinction should be difficult to achieve except though global perturbations that prevent populations from reestablishing themselves following local extinction. High rates of extinction in some pelagic groups suggests either that global perturbations are common, or that the species are much more narrowly adapted than we would infer from current taxonomies.

2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


2019 ◽  
Author(s):  
João Cascalheira

Climate changes that occurred during the Last Glacial Maximum (LGM) had significant consequences in human eco-dynamics across Europe. Among the most striking impacts are the demographic contraction of modern humans into southern refugia and the potential formation of a population bottleneck. In Iberia and southern France transformations also included the occurrence of significant technological changes, mostly marked by the emergence of a diverse set of bifacially-shaped stone projectiles. The rapid dissemination of bifacial technologies and the geographical circumscription of specific projectile morphologies within these regions have been regarded as evidence for: (1) the existence of a system of long-distance exchange and social alliance networks; (2) the organization of human groups into cultural facies with well-defined stylistic territorial boundaries. However, the degree and modes in which cultural transmission have occurred within these territories, and how it may have influenced other domains of the adaptive systems, remains largely unknown. Using southern Iberia as a case-study, this paper presents the first quantitative approach to the organization of lithic technology and its relationship to hunter-gatherers' territorial organization during the LGM. Similarities and dissimilarities in the presence of metric and morphological data describing lithic technologies are used as a proxy to explore modes and degrees of cultural transmission. Statistical results show that similarities in technological options are dependent on the chronology and geographical distance between sites and corroborate previous arguments for the organization of LGM settlement in Southern Iberia into discrete eco-cultural facies.


2014 ◽  
Vol 281 (1797) ◽  
pp. 20142230 ◽  
Author(s):  
Amanda A. Pierce ◽  
Myron P. Zalucki ◽  
Marie Bangura ◽  
Milan Udawatta ◽  
Marcus R. Kronforst ◽  
...  

Range expansions can result in founder effects, increasing genetic differentiation between expanding populations and reducing genetic diversity along the expansion front. However, few studies have addressed these effects in long-distance migratory species, for which high dispersal ability might counter the effects of genetic drift. Monarchs ( Danaus plexippus ) are best known for undertaking a long-distance annual migration in North America, but have also dispersed around the world to form populations that do not migrate or travel only short distances. Here, we used microsatellite markers to assess genetic differentiation among 18 monarch populations and to determine worldwide colonization routes. Our results indicate that North American monarch populations connected by land show limited differentiation, probably because of the monarch's ability to migrate long distances. Conversely, we found high genetic differentiation between populations separated by large bodies of water. Moreover, we show evidence for serial founder effects across the Pacific, suggesting stepwise dispersal from a North American origin. These findings demonstrate that genetic drift played a major role in shaping allele frequencies and created genetic differentiation among newly formed populations. Thus, range expansion can give rise to genetic differentiation and declines in genetic diversity, even in highly mobile species.


2019 ◽  
Vol 110 (5) ◽  
pp. 587-600
Author(s):  
A Millie Burrell ◽  
Jeffrey H R Goddard ◽  
Paul J Greer ◽  
Ryan J Williams ◽  
Alan E Pepper

Abstract Globally, a small number of plants have adapted to terrestrial outcroppings of serpentine geology, which are characterized by soils with low levels of essential mineral nutrients (N, P, K, Ca, Mo) and toxic levels of heavy metals (Ni, Cr, Co). Paradoxically, many of these plants are restricted to this harsh environment. Caulanthus ampexlicaulis var. barbarae (Brassicaceae) is a rare annual plant that is strictly endemic to a small set of isolated serpentine outcrops in the coastal mountains of central California. The goals of the work presented here were to 1) determine the patterns of genetic connectivity among all known populations of C. ampexlicaulis var. barbarae, and 2) estimate contemporary effective population sizes (Ne), to inform ongoing genomic analyses of the evolutionary history of this taxon, and to provide a foundation upon which to model its future evolutionary potential and long-term viability in a changing environment. Eleven populations of this taxon were sampled, and population-genetic parameters were estimated using 11 nuclear microsatellite markers. Contemporary effective population sizes were estimated using multiple methods and found to be strikingly small (typically Ne < 10). Further, our data showed that a substantial component of genetic connectivity of this taxon is not at equilibrium, and instead showed sporadic gene flow. Several lines of evidence indicate that gene flow between isolated populations is maintained through long-distance seed dispersal (e.g., >1 km), possibly via zoochory.


1974 ◽  
Vol 1 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Peter W. Glynn

The movement of surface currents and the availability of coral prey are probably not responsible for the discontinuities in the distribution of Acanthaster (the Crown-of-thorns Starfish or Sea-star) in American waters. Temperature and salinity conditions are critical in development, and it is possible that these parameters are effective locally, for example in the Gulf of Panamá. There is a strong possibility that continuing field work will show that Acanthaster has a significantly more widespread distribution in the eastern Pacific than is currently known.Adult Acanthaster and several species of coral prey exhibited an unusually high tolerance to varying conditions of temperature and salinity. The possibility of step-wise colonization to new areas, mediated by resistant adult populations that can become established during favourable seasons, should be considered in any plans to alter the existing freshwater canal in Panamá. For introductions can be environmentally dangerous.The highest population densities of Acanthaster so far observed in the eastern Pacific, 1 individual/40 m2 to approximately 1 individual/100 m2, are comparable to population sizes in the Indo-Pacific region that are not considered to have a serious impact on coral communities. Coral destruction by Acanthaster can be significant in certain limited areas, but is usually less than that caused by other corallivores.An analysis of coral community structure in relation to Acanthaster density failed to show a significant correlation with (a) number of species, (b) number of live coral colonies, (c) species diversity (H'), or (d) species evenness (J').Prey preference data indicate that Acanthaster selectively destroys rare corals. Replacement of rare, predated corals by fast-growing species (Pocillopora spp.) has been observed in the field, showing that Acanthaster could have a negative effect on species diversity.


2004 ◽  
Vol 13 (10) ◽  
pp. 1853-1874 ◽  
Author(s):  
Francisco Molina-Freaner ◽  
Reyna Castillo Gámez ◽  
Clara Tinoco-Ojanguren ◽  
Alejandro E. Castellanos V.

2020 ◽  
Vol 8 ◽  
Author(s):  
Oana Teodora Moldovan ◽  
Sanda Iepure ◽  
Traian Brad ◽  
Marius Kenesz ◽  
Ionuț Cornel Mirea ◽  
...  

The increasing human impact in Romanian caves raises the urgency of publishing a correct database of the strictly-adapted cave fauna. Previous attempts at indexing cave fauna and classifying caves by using their fauna opened many questions regarding the use of an incomplete list of cave species and mixed lists of troglobionts/stygobionts with troglophiles/stygophiles for ranking caves with priority for protection. It has also become obvious that there is a need to publish a list of Romanian cave species that are under threat. Cave species in Romania (and elsewhere) are endemic on small ranges, are unique and must be considered as important units for conservation. A cave must be equally protected if it has one or more rare and strictly endemic cave species. Although not exhaustive, we here provide the first checklist of Romanian troglobionts/stygobionts developed in the framework of the DARKFOOD and GROUNDWATERISK projects, coordinated by the “Emil Racovita” Institute of Speleology, Cluj-Napoca, Romania. The GIS application was used to complement the checklist of cave species with data on caves and surface environments above the caves. Until complete data on species diversity and population sizes are made available for each cave, measures of conservation can be implemented, based on the presence/absence of cave species, while classifications of caves for protection, based on the number of species, must be avoided. We also propose a list of Romanian caves with fauna that are under threat and a tentative Red List of Romanian troglobiont/stygobionts. This is the first database with identified troglobiont and stygobiont species of Romania, with a critical analysis of their distribution inside the country. A list of caves that need protection for their rare and unique species and a tentative Red List of Romanian cave fauna are also added. A total of 173 species were identified, of which 77 troglobionts and 96 stygobionts are currently registered in 366 caves. The database is divided into two parts, one part with a list of troglobionts, their revised systematic position, cave name, cave code and geographic region; and the second part with the same information on stygobionts. The database represents the contribution of many active researchers, who are the authors of this paper and of review publications of many other authors of the "Emil Racoviță" Institute of Speleology.


2020 ◽  
Author(s):  
Abyot Dibaba Hundie ◽  
Teshome Soromessa Urgessa ◽  
Bikila Warkineh Dullo

Abstract Background This study was carried out in Gerba Dima Forest, South-Western Ethiopia, to determine the floristic composition, species diversity and community types along environmental gradients. Ninety sample plots having a size of 25 × 25 m (625 m2) were laid by employing stratified random sampling. Nested plots were used to sample plants of different sizes and different environmental variables. All woody plant species with Diameter at breast height (DBH) ≥ 2.5 cm and height ≥ 1.5 m were recorded in 25 m X 25 m plots. Within the major plots, five 3 m x 3 m subplots (9 m2) was used to collect shrubs with dbh < 2.5 cm and > 1.5 m height. Within each 9 m2subplots, two 1 m2 subplots were used to collect data on the species and abundance of herbaceous plants. Hierarchical (agglomerative) cluster analysis was performed using the free statistical software R version 3.6.1 using package cluster to classify the vegetation into plant community types. Redundancy Analysis (RDA) ordination was used in describing the pattern of plant communities along an environmental gradient. Result One hundred and eighty plant species belonging to 145 genera, 69 families and comprising of 15 endemic species were recorded. Cluster analysis resulted in five different plant communities and this result was supported by the ordination result. RDA result showed altitude was the main environmental variable in determining the plant communities. The ANOVA test indicated that the five community types differ significantly from each other with regard to EC and K. Conclusions The studied forest can play a significant role in biodiversity conservation since it harbours high species diversity and richness. Thus, all Stakeholders including Oromia Forest and wildlife enterprise (OFWE) and the regional government should work to designate the forest as a biosphere reserve and being registered under UNESCO.


2019 ◽  
Author(s):  
Ben Ashby ◽  
Allison K. Shaw ◽  
Hanna Kokko

AbstractJBS Haldane is widely quoted to have quipped that the Creator, if one exists, has an inordinate fondness for beetles. Although Coleoptera may not be the most speciose order once Hymenopteran diversity is fully accounted for, as a whole the very clear differences in species diversity among taxa require an explanation. Here we show both analytically and through stochastic simulations that dispersal has eco-evolutionary effects that predict taxa to become particularly species-rich when dispersal is neither too low nor too high. Our models combine recent advances in understanding coexistence in niche space with previously verbally expressed ideas, where too low dispersal imposes biogeographic constraints that prevent a lineage from finding new areas to colonize (reducing opportunities for speciation), while too high dispersal impedes population divergence, leading to few but widely distributed species. We show that this logic holds for species richness and is robust to a variety of model assumptions, but peak diversification rate is instead predicted to increase with dispersal. Our work unifies findings of increasing and decreasing effects of dispersal rate on speciation, and explains why organisms with moderate dispersal abilities have the best prospects for high global species richness.


Sign in / Sign up

Export Citation Format

Share Document