Spatial integration in perception and cognition: An empirical approach to the pathophysiology of schizophrenia

2003 ◽  
Vol 26 (1) ◽  
pp. 86-87
Author(s):  
Yue Chen

AbstractEvidence for a dysfunction in cognitive coordination in schizophrenia is emerging, but it is not specific enough to prove (or disprove) this long-standing hypothesis. Many aspects of the external world are spatially mapped in the brain. A comprehensive internal representation relies on integration of information across space. Focus on spatial integration in the perceptual and cognitive processes will generate empirical data that shed light on the pathophysiology of schizophrenia.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
E Soltanmohammadi ◽  
Y Zhang ◽  
I Chatzistamou ◽  
H. Kiaris

Abstract Background Genes that belong to the same network are frequently co-expressed, but collectively, how the coordination of the whole transcriptome is perturbed during aging remains unclear. To explore this, we calculated the correlation of each gene in the transcriptome with every other, in the brain of young and older outbred deer mice (P. leucopus and P. maniculatus). Results In about 25 % of the genes, coordination was inversed during aging. Gene Ontology analysis in both species, for the genes that exhibited inverse transcriptomic coordination during aging pointed to alterations in the perception of smell, a known impairment occurring during aging. In P. leucopus, alterations in genes related to cholesterol metabolism were also identified. Among the genes that exhibited the most pronounced inversion in their coordination profiles during aging was THBS4, that encodes for thrombospondin-4, a protein that was recently identified as rejuvenation factor in mice. Relatively to its breadth, abolishment of coordination was more prominent in the long-living P. leucopus than in P. maniculatus but in the latter, the intensity of de-coordination was higher. Conclusions There sults suggest that aging is associated with more stringent retention of expression profiles for some genes and more abrupt changes in others, while more subtle but widespread changes in gene expression appear protective. Our findings shed light in the mode of the transcriptional changes occurring in the brain during aging and suggest that strategies aiming to broader but more modest changes in gene expression may be preferrable to correct aging-associated deregulation in gene expression.


2021 ◽  
Author(s):  
Hugh McGovern ◽  
Marte Otten

Bayesian processing has become a popular framework by which to understand cognitive processes. However, relatively little has been done to understand how Bayesian processing in the brain can be applied to understanding intergroup cognition. We assess how categorization and evaluation processes unfold based on priors about the ethnic outgroup being perceived. We then consider how the precision of prior knowledge about groups differentially influence perception depending on how the information about that group was learned affects the way in which it is recalled. Finally, we evaluate the mechanisms of how humans learn information about other ethnic groups and assess how the method of learning influences future intergroup perception. We suggest that a predictive processing framework for assessing prejudice could help accounting for seemingly disparate findings on intergroup bias from social neuroscience, social psychology, and evolutionary psychology. Such an integration has important implications for future research on prejudice at the interpersonal, intergroup, and societal levels.


2021 ◽  
Author(s):  
Wendy Ross ◽  
Frédéric Vallée-Tourangeau

There is a type of riddle that Bar-Hillel, Noah and Frederick (2018) call “stumpers”. A stumper is a riddle which is initially intractable because the mental model or representation of the situation described in the riddle does not contain the vital information which is required to solve it. The Cognitive Reflection Task (CRT; Frederick, 2005) on the other hand relies on seemingly completely different cognitive processes. However, exploratory work from Bar-Hillel et al. (2019) suggests that success on stumpers correlates with performance on the CRT. This finding may shed light on the cognitive processes underlying both the resolution of stumpers and the CRT. We replicated the work from Bar-Hillel et al. (2019) suggesting a relationship between performance on the CRT and performance on stumpers as well as extending this to show a relationship between performance on the CRT-v. This may point to the underexplored importance of suppression in solving stumpers and traditional riddles.


2017 ◽  
Vol 19 (3) ◽  
pp. 349-377
Author(s):  
Leonardo Niro Nascimento

This article first aims to demonstrate the different ways the work of the English neurologist John Hughlings Jackson influenced Freud. It argues that these can be summarized in six points. It is further argued that the framework proposed by Jackson continued to be pursued by twentieth-century neuroscientists such as Papez, MacLean and Panksepp in terms of tripartite hierarchical evolutionary models. Finally, the account presented here aims to shed light on the analogies encountered by psychodynamically oriented neuroscientists, between contemporary accounts of the anatomy and physiology of the nervous system on the one hand, and Freudian models of the mind on the other. These parallels, I will suggest, are not coincidental. They have a historical underpinning, as both accounts most likely originate from a common source: John Hughlings Jackson's tripartite evolutionary hierarchical view of the brain.


1996 ◽  
Vol 76 (1) ◽  
pp. 193-244 ◽  
Author(s):  
P. B. Persson

It is generally held that the role of a specific control element can only be understood within its physiological environment. The reviewed studies make it clear that there is a potent interplay between locally produced substances such as adenosine, nitric oxide, prostaglandins, and various others all interacting with the central level of control. This can occur at central sites (e.g., nitric oxide in the brain) or in the periphery (e.g., neural influence on autoregulation). The interactions are more or less pronounced during specific physiological challenges. Furthermore, several of these interactions are altered under pathological circumstances, and in some cases, the interactions seem to maintain or even augment the severity of disease. When more than three parameters participate in an interaction, the resulting regulation may become extremely complex. If these parameters are nonlinearly coupled with each other, the only way to shed light onto the nature of control network is by treating it as a black box. With the use of spectral analysis or nonlinear methods, it is possible to disentangle the fundamental nature of the system in terms of the complexity and stability. Therefore, modern developments in cardiovascular physiology utilizing these techniques, some of which are derived from the "chaos theory," are reviewed.


2019 ◽  
Author(s):  
Deniz Ertekin ◽  
Leonie Kirszenblat ◽  
Richard Faville ◽  
Bruno van Swinderen

AbstractSleep is vital for survival. Yet, under environmentally challenging conditions such as starvation, animals suppress their need for sleep. Interestingly, starvation-induced sleep loss does not evoke a subsequent sleep rebound. Little is known about how starvation-induced sleep deprivation differs from other types of sleep loss, or why some sleep functions become dispensable during starvation. Here we demonstrate that downregulation of unpaired-2 (upd2, the Drosophila ortholog of leptin), is sufficient to mimic a starved-like state in flies. We use this ‘genetically starved’ state to investigate the consequences of a starvation signal on visual attention and sleep in otherwise well-fed flies, thereby sidestepping the negative side-effects of undernourishment. We find that knockdown of upd2 in the fat body is sufficient to suppress sleep while also increasing selective visual attention and promoting night-time feeding. Further, we show that this peripheral signal is integrated in the fly brain via insulin-expressing cells. Together, these findings identify a role for peripheral tissue-to-brain interactions in the simultaneous regulation of sleep and attention, to potentially promote adaptive behaviors necessary for survival in hungry animals.Author SummarySleep is important for maintaining both physiological (e.g., metabolic, immunological, and developmental) and cognitive processes, such as selective attention. Under nutritionally impoverished conditions, animals suppress sleep and increase foraging to locate food. Yet it is currently unknown how an animal is able to maintain well-tuned cognitive processes, despite being sleep deprived. Here we investigate this question by studying flies that have been genetically engineered to lack a satiety signal, and find that signaling from fat bodies in the periphery to insulin-expressing cells in the brain simultaneously regulates sleep need and attention-like processes.


2020 ◽  
Author(s):  
Soma Nonaka ◽  
Kei Majima ◽  
Shuntaro C. Aoki ◽  
Yukiyasu Kamitani

SummaryAchievement of human-level image recognition by deep neural networks (DNNs) has spurred interest in whether and how DNNs are brain-like. Both DNNs and the visual cortex perform hierarchical processing, and correspondence has been shown between hierarchical visual areas and DNN layers in representing visual features. Here, we propose the brain hierarchy (BH) score as a metric to quantify the degree of hierarchical correspondence based on the decoding of individual DNN unit activations from human brain activity. We find that BH scores for 29 pretrained DNNs with varying architectures are negatively correlated with image recognition performance, indicating that recently developed high-performance DNNs are not necessarily brain-like. Experimental manipulations of DNN models suggest that relatively simple feedforward architecture with broad spatial integration is critical to brain-like hierarchy. Our method provides new ways for designing DNNs and understanding the brain in consideration of their representational homology.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Adrian Ponce-Alvarez ◽  
Gabriela Mochol ◽  
Ainhoa Hermoso-Mendizabal ◽  
Jaime de la Rocha ◽  
Gustavo Deco

Previous research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as ‘stiff’ dimensions, while it is insensitive to many others (‘sloppy’ dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.


2019 ◽  
Author(s):  
Adrián Ponce-Alvarez ◽  
Gabriela Mochol ◽  
Ainhoa Hermoso-Mendizabal ◽  
Jaime de la Rocha ◽  
Gustavo Deco

SummaryPrevious research showed that spontaneous neuronal activity presents sloppiness: the collective behavior is strongly determined by a small number of parameter combinations, defined as “stiff” dimensions, while it is insensitive to many others (“sloppy” dimensions). Here, we analyzed neural population activity from the auditory cortex of anesthetized rats while the brain spontaneously transited through different synchronized and desynchronized states and intermittently received sensory inputs. We showed that cortical state transitions were determined by changes in stiff parameters associated with the activity of a core of neurons with low responses to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses evolved along sloppy dimensions associated with the activity of neurons with low centrality and displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the network. Our results shed light on the interplay among stability, flexibility, and responsiveness of neuronal collective dynamics during intrinsic and induced activity.


Sign in / Sign up

Export Citation Format

Share Document