scholarly journals Bioastronomy (Report of Iau Commission 51)

1991 ◽  
Vol 21 (1) ◽  
pp. 599-606
Author(s):  
Marx George

In the recent years, science have become able to give more definite answers to the questions of the abundance of planetary systems, of the pathways of chemical evolution leading to the emergence of simple self-reproducing structures, to the origins of life within and beyond the Solar System. At the same time a new question has been raised: the duration of life-sustaining environment, what is a prerequisit for the emergence of technology. Thanks to the fast progress of computer technology, the search for intelligent radio signals has become affordable. The number of observatories participating in this venture increases rapidly. Preparations are in progress for a large scale systematic survey.

2015 ◽  
Vol 11 (S315) ◽  
pp. 126-129
Author(s):  
Shigehisa Takakuwa ◽  
Nagayoshi Ohashi ◽  
Hsi-Wei Yen ◽  
Ti-Lin Chou ◽  
Kazuya Saigo ◽  
...  

AbstractWe report our systematic survey observations of protostellar sources with the SubMillimeter Array (SMA) and Atacama Large Millimeter/submillimeter Array (ALMA). The purpose of our survey is to investigate formation mechanism of protoplanetary disks, precursors of planetary systems, out of ~1000 AU-scale protostellar envelopes surrounding the protostars. We found that in the early protostars (B335, NGC1333 IRAS 4B), the envelopes do not show significant rotating motions but infalling motions toward the central protostars. In more evolved protostars (L1527 IRS, L1448-mm, L1551 IRS 5), the envelopes are infalling and rotating with the conserved specific angular momenta (that is, vrot ∝ r−1). In most evolved sources (L1551 NE, TMC-1A, L1489 IRS) large-scale (≳100 AU) disks in Keplerian rotation or protoplanetary disks are evident. These results demonstrate a systematic evolutionary trend of envelope gas motions toward the disk formation.


2016 ◽  
Vol 113 (29) ◽  
pp. 8127-8132 ◽  
Author(s):  
Caleb Scharf ◽  
Leroy Cronin

A simple, heuristic formula with parallels to the Drake Equation is introduced to help focus discussion on open questions for the origins of life in a planetary context. This approach indicates a number of areas where quantitative progress can be made on parameter estimation for determining origins of life probabilities, based on constraints from Bayesian approaches. We discuss a variety of “microscale” factors and their role in determining “macroscale” abiogenesis probabilities on suitable planets. We also propose that impact ejecta exchange between planets with parallel chemistries and chemical evolution could in principle amplify the development of molecular complexity and abiogenesis probabilities. This amplification could be very significant, and both bias our conclusions about abiogenesis probabilities based on the Earth and provide a major source of variance in the probability of life arising in planetary systems. We use our heuristic formula to suggest a number of observational routes for improving constraints on origins of life probabilities.


2019 ◽  
Vol 15 (S350) ◽  
pp. 152-157
Author(s):  
Fred J. Ciesla

AbstractAs observational facilities improve, providing new insights into the chemistry occurring in protoplanetary disks, it is important to develop more complete pictures of the processes that shapes the chemical evolution of materials during this stage of planet formation. Here we describe how primitive meteorites in our own Solar System can provide insights into the processes that shaped planetary materials early in their evolution around the Sun. In particular, we show how this leads us to expect protoplanetary disks to be very dynamic objects and what modeling and laboratory studies are needed to provide a more complete picture for the early chemical evolution that occurs for planetary systems.


1989 ◽  
Vol 14 (2) ◽  
pp. 103-131 ◽  
Author(s):  
J. Mayo Greenberg ◽  
Nansheng Zhao ◽  
Joniek Hage

Author(s):  
John Chambers ◽  
Jacqueline Mitton

The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the planetary sciences, the book offers the most up-to-date and authoritative treatment of the subject available. It examines how the evolving universe set the stage for the appearance of our Sun, and how the nebulous cloud of gas and dust that accompanied the young Sun eventually became the planets, comets, moons, and asteroids that exist today. It explores how each of the planets acquired its unique characteristics, why some are rocky and others gaseous, and why one planet in particular—our Earth—provided an almost perfect haven for the emergence of life. The book takes readers to the very frontiers of modern research, engaging with the latest controversies and debates. It reveals how ongoing discoveries of far-distant extrasolar planets and planetary systems are transforming our understanding of our own solar system's astonishing history and its possible fate.


Author(s):  
Karel Schrijver

In this chapter, the author summarizes the properties of the Solar System, and how these were uncovered. Over centuries, the arrangement and properties of the Solar System were determined. The distinctions between the terrestrial planets, the gas and ice giants, and their various moons are discussed. Whereas humans have walked only on the Moon, probes have visited all the planets and several moons, asteroids, and comets; samples have been returned to Earth only from our moon, a comet, and from interplanetary dust. For Earth and Moon, seismographs probed their interior, whereas for other planets insights come from spacecraft and meteorites. We learned that elements separated between planet cores and mantels because larger bodies in the Solar System were once liquid, and many still are. How water ended up where it is presents a complex puzzle. Will the characteristics of our Solar System hold true for planetary systems in general?


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


2021 ◽  
Vol 20 (2) ◽  
pp. 142-149
Author(s):  
Avnish Kumar Arora ◽  
Pankaj Kumar

AbstractStudies on the interaction of biomolecules with inorganic compounds, mainly mineral surfaces, are of great concern in identifying their role in chemical evolution and origins of life. Metal oxides are the major constituents of earth and earth-like planets. Hence, studies on the interaction of biomolecules with these minerals are the point of concern for the study of the emergence of life on different planets. Zirconium oxide is one of the metal oxides present in earth's crust as it is a part of several types of rocks found in sandy areas such as beaches and riverbeds, e.g. pebbles of baddeleyite. Different metal oxides have been studied for their role in chemical evolution but no studies have been reported about the role of zirconium oxide in chemical evolution and origins of life. Therefore, studies were carried out on the interaction of ribonucleic acid constituents, 5′-CMP (cytidine monophosphate), 5′-UMP (uridine monophosphate), 5′-GMP (guanosine monophosphate) and 5′-AMP (adenosine monophosphate), with zirconium oxide. Synthesized zirconium oxide particles were characterized by using vibrating sample magnetometer, X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy. Zirconia particles were in the nanometre range, from 14 to 27 nm. The interaction of zirconium oxide with ribonucleic acid constituents was performed in the concentration range of 5 × 10−5–300 × 10−5 M. Interaction studies were carried out in three mediums; acidic (pH 4.0), neutral (pH 7.0) and basic (pH 9.0). At neutral pH, maximum interaction was observed. The interaction of zirconium oxide with 5′-UMP was 49.45% and with 5′-CMP 67.98%, while with others it was in between. Interaction studies were Langmurian in nature. Xm and KL values were calculated. Infrared spectral studies of ribonucleotides, metal oxide and ribonucleotide–metal oxide adducts were carried out to find out the interactive sites. It was observed that the nitrogen base and phosphate moiety of ribonucleotides interact with the positive charge surface of metal oxide. SEM was also carried out to study the adsorption. The results of the present study favour the important role of zirconium oxide in concentrating the organic molecules from their dilute aqueous solutions in primeval seas.


Sign in / Sign up

Export Citation Format

Share Document