scholarly journals The wind of P Cygni

1989 ◽  
Vol 113 ◽  
pp. 259-260
Author(s):  
J. Puls ◽  
A.W.A. Pauldrach ◽  
R.P. Kudritzki

The stationary features of the wind of P Cygni are considerably different from those of ‘normal’ supergiant winds with comparable luminosity. In contrast to such winds, which are generally accepted to be driven by radiation pressure, P Cygni’s mass-loss rate is higher by a factor of 5, the terminal velocity is higher by a factor of 10, and the velocity law itself is much flatter than would be expected from a first glance at glance at typical scaling relations. However, these relations depend crucially and non-linearly on the star’s distance from the Eddington limit, which for P Cyg is very small (see below). Here we investigate whether the acceleration mechanism of P Cygni’s wind can also be explained by line pressure and to what extent self-consistent wind models represent the observed quantities (especially the IR energy distribution).

2016 ◽  
Vol 12 (S329) ◽  
pp. 401-401
Author(s):  
Alex C. Gormaz-Matamala ◽  
Michel Curé ◽  
Lydia Cidale ◽  
Roberto Venero

AbstractIn the frame of radiation driven wind theory (Castor et al.1975), we present self-consistent hydrodynamical solutions to the line-force parameters (k, α, δ) under LTE conditions. Hydrodynamic models are provided by HydWind (Curé 2004). We evaluate these results with those ones previously found in literature, focusing in different regions of the optical depth to be used to perform the calculations. The values for mass-loss rate and terminal velocity obtained from our calculations are also presented.We also examine the line-force parameters for the case when large changes in ionization throughout the wind occurs (δ-slow solutions, Curé et al.2011).


1989 ◽  
Vol 113 ◽  
pp. 261-262
Author(s):  
A.W.A. Pauldrach ◽  
J. Puls ◽  
R.P. Kudritzki

Since the basic mechanisms that produce photometric variations, shell ejections, and eruptions of LBV’s are still unknown, it is worthwhile to investigate whether instabilities can occur when the improved self-consistent NLTE treatment of radiation-driven winds (see Pauldrachet al. 1986, Pauldrach 1987, Puis 1987, Pauldrach & Herrero 1988) is applied to objects lying in the LBV part of the H-R diagram. The motivation is obvious: LBV’s have lost considerable fractions of their initial masses and hence have L/M ratios close to the Eddington limit. For such objects, radiation-driven wind theory predicts not only a strong dependence of the mass-loss rate on the self-consistently calculated parameters k, α, and δ, which result from the NLTE occupation numbers of the 133 ions contributing to the line force, but also on Γ (= L/LEdd): Ṁ ~ k1/(α – δ)(1 – Γ)(α – 1)/(α – δ). Here we investigate the dependences of Ṁ on M (through Γ) and on the physical environment of the atmosphere (through k,α, δ) separately. The calculations are performed over a large model grid of stellar parameters for P Cyg, a typical LBV (see Fig. 1).


1987 ◽  
Vol 122 ◽  
pp. 449-450
Author(s):  
Raman K. Prinja ◽  
Ian D. Howarth

The most sensitive indicators of mass-loss for stars in the upper left part of the HR diagram are the UV P Cygni profiles observed in the resonance lines of common ions such as N V, Si IV, and C IV. We present here some results from a study of these lines in the high resolution IUE spectra of 197 Ï stars. Profile fits were carried out in the manner described by Prinja & Howarth (1986) for all unsaturated P Cygni resonance doublets. The parameterisations adopted enable the product of mass-loss rate (Ṁ) and ion fraction (qi) to be determined at a given velocity, such that Ṁ qi°C Ni R* v∞, where Ni is the column density of the observed ion i, v∞ is the terminal velocity, and R⋆ is the stellar radius. The accompanying figures illustrate the behaviour of Ṁ qi (evaluated at 0.5 v∞) for N V and C IV.


1995 ◽  
Vol 155 ◽  
pp. 141-142
Author(s):  
Martin Groenewegen

AbstractThe relation between mass loss rate and pulsation period in carbon Miras is discussed. The dust mass loss rate is very low (about 2 10−10 M⊙yr) up to about P = 380 days, where there is a sudden increase. For P > 400 days there is a linear relation between log and P. The change in the mass loss rate near 380 days may be related to radiation pressure on dust becoming effective in driving the outflow.


2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


2019 ◽  
Vol 71 (4) ◽  
Author(s):  
Nao Takeda ◽  
Jun Fukue

Abstract Relativistic accretion disk winds driven by disk radiation are numerically examined by calculating the relativistic radiative transfer equation under a plane-parallel approximation. We first solve the relativistic transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained flux, we then solve the vertical hydrodynamical equation under the central gravity, and obtain a new velocity field and the mass-loss rate as an eigenvalue. We repeat these double iteration processes until both the intensity and velocity profiles converge. We further calculate these vertical disk winds at various disk radii for appropriate boundary conditions, and obtain the mass-loss rate as a function of a disk radius for a given disk luminosity. Since in the present study we assume a vertical flow, and the rotational effect is ignored, the disk wind can marginally escape for the Eddington disk luminosity. When the disk luminosity is close to the Eddington one, the wind flow is firstly decelerated at around z ∼ r, and then accelerated to escape. For a larger disk luminosity, on the other hand, the wind flow is monotonically accelerated to infinity. Under the boundary condition that the wind terminal velocity is equal to the Keplerian speed at the disk, we find that the normalized mass-loss rate per unit area, $\skew9\hat{\skew9\dot{J}}$, is roughly expressed as $\skew9\hat{\skew9\dot{J}} \sim 3 (r_{\rm in}/r_{\rm S}) \Gamma _{\rm d} \tau _{\rm b} (r/r_{\rm S})^{-5/2}(1-\sqrt{r_{\rm in}/r})$, where rin is the disk inner radius, rS is the Schwarzschild radius of the central object, Γd is the disk normalized luminosity, τb is the wind optical depth, and r is the radial distance from the center.


Author(s):  
E. S. Kalinicheva ◽  
◽  
V. I. Shematovich ◽  
Ya. N. Pavlyuchenkov ◽  
◽  
...  

In this work we present the results of the modeling of exoplanet pi Men c upper atmosphere, produced using the previously developed one-dimensional self-consistent aeronomic model. The model used takes into account the contribution of suprathermal particles, which significantly refines the heating function of the atmosphere. The hight profiles of temperature, velocity and density were obtained, the atmospheric mass-loss rate was calculated. The presence of two hight-scales in the structure of the atmosphere was found: the first corresponds to a relatively dense stationary atmosphere, the second to a more rarefied corona.


2014 ◽  
Vol 9 (S307) ◽  
pp. 104-105
Author(s):  
M. Haucke ◽  
I. Araya ◽  
C. Arcos ◽  
M. Curé ◽  
L. Cidale ◽  
...  

AbstractA new radiation-driven wind solution called δ-slow was found by Curé et al. (2011) and it predicts a mass-loss rate and terminal velocity slower than the fast solution (m-CAK, Pauldrach et al. 1986). In this work, we present our first synthetic spectra based on the δ-slow solution for the wind of B supergiant (BSG) stars. We use the output of our hydrodynamical code HYDWIND as input in the radiative transport code FASTWIND (Puls et al. 2005). In order to obtain stellar and wind parameters, we try to reproduce the observed Hα, Hβ, Hγ, Hδ, Hei 4471, Hei 6678 and Heii 4686 lines. The synthetic profiles obtained with the new hydrodynamical solutions are in good agreement with the observations and could give us clues about the parameters involved in the radiation force.


1988 ◽  
Vol 108 ◽  
pp. 148-149
Author(s):  
C. Doom

Wolf-Rayet (WR) stars are the descendants of massive stars that have lost their hydrogen rich envelope. Recently more accurate data on WR stars have become available: mass-loss rates (van der Hucht et al. 1986), radii and luminosities (Underhill 1983, Nussbaumer et al. 1982).It may therefore be worthwhile to investigate if combinations of observed parameters shed some light on the structure of the extended stellar wind of WR stars.In many WR stars the photosphere is situated in the stellar wind. We assume that the wind is stationary and isotropic. Further we assume a velocity law v(r)=v∞(1−Rs/r)β where v∞ is the terminal velocity of the wind in km/s, Rs is the radius where the wind acceleration starts and β > 0 is a free parameter. We can then easily compute the level R in the wind where the photosphere is located (de Loore et al. 1982): R is the solution of the equation 6.27 10−9 τat R v∞/ = fβ(Rs/R) where τat is the optical depth at the photosphere (2/3 or 1), (>0) is the mass loss rate in M⊙/yr and fβ > 1 is a slowly varying function (Doom 1987).


1979 ◽  
Vol 83 ◽  
pp. 281-286
Author(s):  
Yoji Kondo ◽  
George E. McCluskey ◽  
Jürgen Rahe

The far-UV spectrum of the eclipsing binary UW CMa (O7f + O-B) had earlier been utilized to derive a mass-loss rate of about 10−6 to 10−5 solar mass per year. The mass flow seems to be basically in the form of a stellar wind emanating from the O7f primary component, with radiation pressure as the controlling factor. The main characteristics that make UW CMa a possible progenitor of a Wolf-Rayet system are discussed.


Sign in / Sign up

Export Citation Format

Share Document