scholarly journals Binary Stars in Praesepe

1992 ◽  
Vol 135 ◽  
pp. 231-233
Author(s):  
Pavel Kroupa ◽  
Christopher A. Tout

AbstractIn open clusters the scatter about the single-star main sequence is usually negligible. However, unresolved binary systems are brighter and redder than single stars, and thus some ‘stars’ appear shifted away from the main sequence. We make very simple models of the Praesepe cluster, and find evidence that low-mass systems prefer independent component masses, whereas systems of higher mass than the sun appear to favour some correlation towards equal-mass components.

1992 ◽  
Vol 135 ◽  
pp. 234-237
Author(s):  
Pavel Kroupa ◽  
Christopher A. Tout ◽  
Gerard Gilmore

AbstractIf all stars within a small volume surrounding the sun are counted we obtain an approximation of the low-mass single-star luminosity function. Alternatively, deep photographic surveys cannot resolve most of the binary systems, and consequently we obtain an approximation to the system luminosity function. Comparing the single-star and system luminosity functions we derive the stellar mass function and constrain the properties of binary systems.


2020 ◽  
Vol 642 ◽  
pp. A180
Author(s):  
Ingrid Pelisoli ◽  
Joris Vos ◽  
Stephan Geier ◽  
Veronika Schaffenroth ◽  
Andrzej S. Baran

Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30%) has prompted single star formation scenarios to be proposed. Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction. Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry. Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary. Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs.


2015 ◽  
Vol 10 (S314) ◽  
pp. 117-118
Author(s):  
R. Azulay ◽  
J.C. Guirado ◽  
J.M. Marcaide ◽  
I. Martí-Vidal ◽  
E. Ros

AbstractPrecise determination of dynamical masses of pre-main-sequence stars is essential for calibrating stellar evolution models, that are widely used to derive theoretical masses of young low-mass objects. We have determined the individual masses of the pair AB Dor Ba/Bb using Australian Long Baseline Array observations and archive infrared data, as part of a larger program directed to monitor binary systems in the AB Doradus moving group. We have detected, for the first time, compact radio emission from both stars. This has allowed us to determine the orbital parameters of both the relative and absolute orbits and, consequently, their individual dynamical masses: 0.28±0.05 M⊙ and 0.25±0.05 M⊙. Comparisons of the dynamical masses with the prediction of pre-main-sequence (PMS) evolutionary models show that the models underpredict the dynamical masses of the binary components Ba and Bb by 10–30% and 10–40%, respectively.


1998 ◽  
Vol 11 (1) ◽  
pp. 371-371
Author(s):  
S. Narusawa ◽  
A. Yamasaki ◽  
Y. Nakamura

Although the evolution of binary systems has been qualitatively interpreted with the evolutionary scenario, the quantitative interpretation of any observed system is still unsatisfactory due to the difficulty of the quantitative treatment of mass and angular momentum transfer/loss. To reach a true understanding of the evolution of binary systems, we have to accumulate more observational evidence. So far, we have observed several binaries that are short-period and noncontact, and found the existence of extremely small-mass systems. In the present paper, we study another short-period (P=0.659d), noncontact, eclipsing binary system, V392 Ori. We have made photometric and spectroscopic observations of V392 Ori. The light curves are found to vary, suggesting the existence of circumstellar matter around the system. Combining the photometric and spectroscopic results, we obtain parameters describing the system; we find the mass of the primary component is only 0.6Mʘ- undermassive for its spectral and luminosity class A5V, suggesting that a considerable amount of its original mass has been lost from the system during the course of evolution. The low-mass problem is very important for investigation of the evolution of close binary systems: largemass loss within and/or after the main-sequence will have a significant influence on the future evolution of binary systems.


2018 ◽  
Vol 619 ◽  
pp. A121 ◽  
Author(s):  
Jordi Casanova ◽  
Jordi José ◽  
Steven N. Shore

Context. Classical novae are explosive phenomena that take place in stellar binary systems. They are powered by mass transfer from a low-mass main sequence star onto either a CO or ONe white dwarf. The material accumulates for 104–105 yr until ignition under degenerate conditions, resulting in a thermonuclear runaway. The nuclear energy released produces peak temperatures of ∼0.1–0.4 GK. During these events, 10−7−10−3 M⊙ enriched in intermediate-mass elements, with respect to solar abundances, are ejected into the interstellar medium. However, the origin of the large metallicity enhancements and the inhomogeneous distribution of chemical species observed in high-resolution spectra of ejected nova shells is not fully understood. Aims. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities that operate at the core-envelope interface can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, such multidimensional simulations have been performed for a small number of cases and much of the parameter space remains unexplored. Methods. We investigated the dredge-up, driven by Kelvin-Helmholtz instabilities, for white dwarf masses in the range 0.8–1.25 M⊙ and different core compositions, that is, CO-rich and ONe-rich substrates. We present a set of five numerical simulations performed in two dimensions aimed at analyzing the possible impact of the white dwarf mass, and composition, on the metallicity enhancement and explosion characteristics. Results. At the time we stop the simulations, we observe greater mixing (∼30% higher when measured in the same conditions) and more energetic outbursts for ONe-rich substrates than for CO-rich substrates and more massive white dwarfs.


1994 ◽  
Vol 146 ◽  
pp. 61-70
Author(s):  
James Liebert

The term dwarf stars identifies objects of small radius in the Hertzsprung-Russell (H-R) Diagram, but encompasses more than one phase of stellar evolution. The M dwarfs (type dM) populate the main sequence at the low mass end; these are the coolest core hydrogen-burning stars. They belong generally to the Galactic disk, or Population I, have relatively small space motions with respect to the Sun, and have similar metallicities to the Sun (although perhaps only within a factor of several). In particular, this means that the abundance of oxygen is always greater than that of carbon. The M subdwarfs (sdM) are the Population II counterparts, showing low metallicities and high space motions. Because they have smaller radii, they define a main sequence at lower luminosity than the M dwarfs for a given temperature. Hence the term subdwarf.


2001 ◽  
Vol 200 ◽  
pp. 472-482
Author(s):  
Francesco Palla

I will discuss several tests to gauge the accuracy of pre–main-sequence (PMS) models. Methods to determine the mass of young stars are overviewed, with emphasis on the information provided by double-lined, spectroscopic binary systems. A comparison of the dynamically determined masses with those estimated using the PMS models of Palla & Stahler (1999) is presented. Good agreement between empirical and theoretical masses is found. The analysis of the inferred ages from the isochrones shows a remarkable coevality within each binary system. A complete assessment of the accuracy of PMS tracks needs the identification of eclipsing systems of low-mass.


1984 ◽  
Vol 105 ◽  
pp. 123-138
Author(s):  
R.D. Cannon

This review will attempt to do two things: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars, and (ii) point out some problem areas where observations and theory do not seem to agree very well. This is of course too vast a field of research to be covered in one brief review, so I shall concentrate on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster I shall consider successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase.


2020 ◽  
Vol 495 (2) ◽  
pp. 1978-1983
Author(s):  
Nate Bastian ◽  
Sebastian Kamann ◽  
Louis Amard ◽  
Corinne Charbonnel ◽  
Lionel Haemmerlé ◽  
...  

ABSTRACT We address the origin of the observed bimodal rotational distribution of stars in massive young and intermediate age stellar clusters. This bimodality is seen as split main sequences at young ages and also has been recently directly observed in the Vsini distribution of stars within massive young and intermediate age clusters. Previous models have invoked binary interactions as the origin of this bimodality, although these models are unable to reproduce all of the observational constraints on the problem. Here, we suggest that such a bimodal rotational distribution is set-up early within a cluster’s life, i.e. within the first few Myr. Observations show that the period distribution of low-mass ($\lesssim\! 2 \, \mathrm{M}_\odot$) pre-main-sequence (PMS) stars is bimodal in many young open clusters, and we present a series of models to show that if such a bimodality exists for stars on the PMS that it is expected to manifest as a bimodal rotational velocity (at fixed mass/luminosity) on the main sequence for stars with masses in excess of ∼1.5 M⊙. Such a bimodal period distribution of PMS stars may be caused by whether stars have lost (rapid rotators) or been able to retain (slow rotators) their circumstellar discs throughout their PMS lifetimes. We conclude with a series of predictions for observables based on our model.


2003 ◽  
Vol 211 ◽  
pp. 257-260
Author(s):  
Nick Siegler ◽  
Laird M. Close ◽  
Eric E. Mamajek ◽  
Melanie Freed

We have used the adaptive optics system Hōkūpa'a at Gemini North to search for companions from a flux-limited (Ks > 12) survey of 30 nearby M6.0–M7.5 dwarfs. Our observations, which are sensitive to companions with separations > 0.1″ (~ 2.8 AU), detect 3 new binary systems. This implies an overall binary fraction of 9±4% for M6.0–M7.5 binaries. This binary frequency is somewhat less than the 19±7% measured for late M stars and ~ 20% for L stars, but is still statistically consistent. However, the result is significantly lower than the binary fractions observed amongst solar mass main sequence stars (~60%) and early M stars (~35%).


Sign in / Sign up

Export Citation Format

Share Document