scholarly journals 53 Piscium, an SPB Star with Activity

2002 ◽  
Vol 185 ◽  
pp. 236-237
Author(s):  
J.-M. Le Contel ◽  
P. Mathias ◽  
E. Chapellier ◽  
J.-C. Valtier

The star 53 Psc (HD 3379, B2.5IV) has been observed as variable by several authors (Sareyan et al., 1979) with frequencies around 10 c d–1 and has been classified as a β Cephei star. Conversely, other authors (e.g. Percy, 1971) found it to be constant.New high resolution, high signal-to-noise ratio, Spectroscopic observations have been performed at the Observatoire de Haute-Provence in 1996 over 11 nights. The spectral domain covers around 200 Å and is centered on Hδ. Radial velocities were deduced from an auto-correlation technique with a scatter around 0.4kms−1.No high frequency variations are observed. Three frequencies have been detected with a false alarm detection above the 1 % level. A fourth one may be present but its amplitude is below this 1 % level. Results are displayed in Table 1.

1994 ◽  
Vol 162 ◽  
pp. 104-105
Author(s):  
Eduardo Janot-Pacheco ◽  
Nelson Vani Leister

We have started in 1990 a search for moving bumps in the HeI λ 667.8 nm of mainly southern, bright Be stars. The objects of our sample have been selected on the basis of photometric variability (Cuypers et al., 1989). High resolution (R≥ 30,000), high signal-to-noise ratio (S/R≥ 300) spectroscopic observations have been performed at the brazilian Laboratório Nacional de Astrofísica with a CCD camera attached to the coudé spectrograph of the 1.60 m telescope (e.g. Table I). Several hundred spectra have been taken during the last three years. Photometric observations simultaneous with spectroscopy were made on the same site in July 1992 with a two-channel photometer (Stromgren b filter) and a CCD camera (Johnson B filter) installed at two 0.60 m telescopes. The idea is try to disentangle the controversy between NRP and RM models with the help of simultaneous spectroscopy and photometry.


Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 637 ◽  
Author(s):  
Christoph Franzen ◽  
Patrick Joseph Espy ◽  
Niklas Hofmann ◽  
Robert Edward Hibbins ◽  
Anlaug Amanda Djupvik

Spectroscopic measurements of the hydroxyl (OH) airglow emissions are often used to infer neutral temperatures near the mesopause. Correct Einstein coefficients for the various transitions in the OH airglow are needed to calculate accurate temperatures. However, studies from some studys showed experimentally and theoretically that the most commonly used Einstein spontaneous emission transition probabilities for the Q-branch of the OH Meinel (6,2) transition are overestimated. Extending their work to several Δv = 2 and 3 transitions from v′ = 3 to 9, we have determined Einstein coefficients for the first four Q-branch rotational lines. These have been derived from high resolution, high signal to noise spectroscopic observations of the OH airglow in the night sky from the Nordic Optical Telescope. The Q-branch Einstein coefficients calculated from these spectra show that values currently tabulated in the HITRAN database overestimate many of the Q-branch transition probabilities. The implications for atmospheric temperatures derived from OH Q-branch measurements are discussed.


1988 ◽  
Vol 132 ◽  
pp. 589-592
Author(s):  
Y. Chmielewski ◽  
D. L. Lambert

We show that the carbon isotope ratio 12C/13C in the atmosphere of dwarf stars can be determined with reasonable accuracy from high resolution, high signal-to-noise ratio observations of the CH G-band in their spectra. Lines suitable for this purpose are selected from consideration of the solar case, for which 12C/13C = 89 is derived. A preliminary analysis of these features in the spectra of μ Her, δ Eri and τ Cet yields 12C/13C values of 84, 80 and 150 respectively.


1987 ◽  
Vol 120 ◽  
pp. 387-390
Author(s):  
J.-P. Maillard ◽  
S.C. Foster ◽  
T. Amano ◽  
P.A. Feldman

We have used the Cassegrain-focus Fourier Transform Spectrometer of the Canada-France-Hawaii Telescope to record high-resolution (0.03 cm−1), high signal-to-noise ratio spectra of the extreme carbon stars IRC+10°216 and CIT6 in the 2850–3100 cm−1 region. Upper limits were obtained for the column densities of silicon nitride (2-0 band of the A-X system), ethylene (ν11 fundamental band at ν0 = 2988.7 cm−1), and ethane (ν7 fundamental band at ν0 = 2985.4 cm−1).


Sign in / Sign up

Export Citation Format

Share Document