scholarly journals The 12C/13C Ratio in Unevolved Cool Stars

1988 ◽  
Vol 132 ◽  
pp. 589-592
Author(s):  
Y. Chmielewski ◽  
D. L. Lambert

We show that the carbon isotope ratio 12C/13C in the atmosphere of dwarf stars can be determined with reasonable accuracy from high resolution, high signal-to-noise ratio observations of the CH G-band in their spectra. Lines suitable for this purpose are selected from consideration of the solar case, for which 12C/13C = 89 is derived. A preliminary analysis of these features in the spectra of μ Her, δ Eri and τ Cet yields 12C/13C values of 84, 80 and 150 respectively.

2002 ◽  
Vol 185 ◽  
pp. 236-237
Author(s):  
J.-M. Le Contel ◽  
P. Mathias ◽  
E. Chapellier ◽  
J.-C. Valtier

The star 53 Psc (HD 3379, B2.5IV) has been observed as variable by several authors (Sareyan et al., 1979) with frequencies around 10 c d–1 and has been classified as a β Cephei star. Conversely, other authors (e.g. Percy, 1971) found it to be constant.New high resolution, high signal-to-noise ratio, Spectroscopic observations have been performed at the Observatoire de Haute-Provence in 1996 over 11 nights. The spectral domain covers around 200 Å and is centered on Hδ. Radial velocities were deduced from an auto-correlation technique with a scatter around 0.4kms−1.No high frequency variations are observed. Three frequencies have been detected with a false alarm detection above the 1 % level. A fourth one may be present but its amplitude is below this 1 % level. Results are displayed in Table 1.


2017 ◽  
Vol 2 (2) ◽  
pp. 559-564 ◽  
Author(s):  
D.A. Fouda ◽  
M. Hamdy ◽  
M. Nouh ◽  
M. Beheary ◽  
Abdelaziz Bakrey ◽  
...  

AbstractWe present a synthetic spectra study of two new galactic early-type O4 dwarf stars(ALS 19618 and BD+50886) with high signal-to-noise ratio, typically S/N ∼ 300, medium-rosalution R ∼ 2500 optical spectra of O4 dwarfs stars from Galactic O-Stars Spectroscopic Survey (GOSSS), The main stellar parameters (Teff, surface gravity, rotational velocity) have been established using non-LTE, line-blanketed, atmospheric models calculated by TLUSTY204 and SYNSPEC49.


1987 ◽  
Vol 120 ◽  
pp. 387-390
Author(s):  
J.-P. Maillard ◽  
S.C. Foster ◽  
T. Amano ◽  
P.A. Feldman

We have used the Cassegrain-focus Fourier Transform Spectrometer of the Canada-France-Hawaii Telescope to record high-resolution (0.03 cm−1), high signal-to-noise ratio spectra of the extreme carbon stars IRC+10°216 and CIT6 in the 2850–3100 cm−1 region. Upper limits were obtained for the column densities of silicon nitride (2-0 band of the A-X system), ethylene (ν11 fundamental band at ν0 = 2988.7 cm−1), and ethane (ν7 fundamental band at ν0 = 2985.4 cm−1).


1994 ◽  
Vol 162 ◽  
pp. 104-105
Author(s):  
Eduardo Janot-Pacheco ◽  
Nelson Vani Leister

We have started in 1990 a search for moving bumps in the HeI λ 667.8 nm of mainly southern, bright Be stars. The objects of our sample have been selected on the basis of photometric variability (Cuypers et al., 1989). High resolution (R≥ 30,000), high signal-to-noise ratio (S/R≥ 300) spectroscopic observations have been performed at the brazilian Laboratório Nacional de Astrofísica with a CCD camera attached to the coudé spectrograph of the 1.60 m telescope (e.g. Table I). Several hundred spectra have been taken during the last three years. Photometric observations simultaneous with spectroscopy were made on the same site in July 1992 with a two-channel photometer (Stromgren b filter) and a CCD camera (Johnson B filter) installed at two 0.60 m telescopes. The idea is try to disentangle the controversy between NRP and RM models with the help of simultaneous spectroscopy and photometry.


2018 ◽  
Vol 615 ◽  
pp. A31 ◽  
Author(s):  
B. Deka-Szymankiewicz ◽  
A. Niedzielski ◽  
M. Adamczyk ◽  
M. Adamów ◽  
G. Nowak ◽  
...  

Context. Our knowledge of the intrinsic parameters of exoplanets is as precise as our determinations of their stellar hosts parameters. In the case of radial velocity searches for planets, stellar masses appear to be crucial. But before estimating stellar masses properly, detailed spectroscopic analysis is essential. With this paper we conclude a general spectroscopic description of the Pennsylvania-Toruń Planet Search (PTPS) sample of stars. Aims. We aim at a detailed description of basic parameters of stars representing the complete PTPS sample. We present atmospheric and physical parameters for dwarf stars observed within the PTPS along with updated physical parameters for the remaining stars from this sample after the first Gaia data release. Methods. We used high resolution (R = 60 000) and high signal-to-noise-ratio (S/N = 150–250) spectra from the Hobby-Eberly Telescope and its High Resolution Spectrograph. Stellar atmospheric parameters were determined through a strictly spectroscopic local thermodynamic equilibrium analysis (LTE) of the equivalent widths of Fe I and Fe II lines. Stellar masses, ages, and luminosities were estimated through a Bayesian analysis of theoretical isochrones. Results. We present Teff, log g, [Fe/H], microturbulence velocities, absolute radial velocities, and rotational velocities for 156 stars from the dwarf sample of PTPS. For most of these stars these are the first determinations. We refine the definition of PTPS subsamples of stars (giants, subgiants, and dwarfs) and update the luminosity classes for all PTPS stars. Using available Gaia and HIPPARCOS parallaxes, we redetermine the stellar parameters (masses, radii, luminosities, and ages) for 451 PTPS stars. Conclusions. The complete PTPS sample of 885 stars is composed of 132 dwarfs, 238 subgiants, and 515 giants, of which the vast majority are of roughly solar mass; however, 114 have masses higher than 1.5 M⊙ and 30 of over 2 M⊙. The PTPS extends toward much less metal abundant and much more distant stars than other planet search projects aimed at detecting planets around evolved stars; 29% of our targets belong to the Galactic thick disc and 2% belong to the halo.


Sign in / Sign up

Export Citation Format

Share Document