scholarly journals Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network

Author(s):  
K. Ackley ◽  
V. B. Adya ◽  
P. Agrawal ◽  
P. Altin ◽  
G. Ashton ◽  
...  

Abstract Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.

4open ◽  
2020 ◽  
Vol 3 ◽  
pp. 14
Author(s):  
David Lunney

The neutron-star collision revealed by the event GW170817 gave us a first glimpse of a possible birthplace of most of our heavy elements. The multi-messenger nature of this historical event combined gravitational waves, a gamma-ray burst and optical astronomy of a “kilonova”, bringing the first observations of rapid neutron capture (r process) nucleosynthesis after 60 years of speculation. Modeling the r process requires a prodigious amount of nuclear-physics ingredients: practically all the quantum state and interaction properties of virtually all neutron-rich nuclides, many of which may never be produced in the laboratory! Another essential contribution of nuclear physics to neutron stars (and their eventual coalescence) is the equation of state (EoS) that defines their structure and composition. The EoS, combined with the knowledge of nuclear binding energies, determines the elemental profile of the outer crust of a neutron star and the relationship between its radius and mass. In addition, the EoS determines the form of the gravitational wave signal. This article combines a tutorial presentation and bibliography with recent results that link nuclear mass spectrometry to gravitational waves via neutron stars.


2004 ◽  
Vol 13 (07) ◽  
pp. 1293-1296 ◽  
Author(s):  
GUILHERME F. MARRANGHELLO ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
JOSÉ A. de FREITAS PACHECO ◽  
MANFRED DILLIG ◽  
HÉLIO T. COELHO

We discuss, in this work, new aspects related to the emission of gravitational waves by neutron stars, which undergo a phase transition, from nuclear to quark matter, in its inner core. Such a phase transition would liberate around 1052–53 erg of energy in the form of gravitational waves which, if detected, may shed some light in the structure of these compact objects and provide new insights on the equation of state of nuclear matter.


2002 ◽  
Vol 185 ◽  
pp. 612-615
Author(s):  
Johannes Ruoff

AbstractThe equation of state (EOS) is still the big unknown in the physics of neutron stars. An accurate measurement of both the mass and the radius of a neutron star would put severe constraints on the range of possible EOSs. I discuss how the parameters of the oscillation modes of a neutron star, measured from the emitted gravitational waves, can in principle be used to infer its mass and radius, and thus reveal its EOS.


2021 ◽  
Vol 252 ◽  
pp. 05005
Author(s):  
Alkiviadis Kanakis-Pegios ◽  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

One of the greatest interest and open problems in nuclear physics is the upper limit of the speed of sound in dense nuclear matter. Neutron stars, both in isolated and binary system cases, constitute a very promising natural laboratory for studying this kind of problem. This present work is based on one of our recent study, regarding the speed of sound and possible constraints that we can obtain from neutron stars. To be more specific, in the core of our study lies the examination of the speed of sound through the measured tidal deformability of a binary neutron star system (during the inspiral phase). The relation between the maximum neutron star mass scenario and the possible upper bound on the speed of sound is investigated. The approach that we used follows the contradiction between the recent observations of binary neutron star systems, in which the effective tidal deformability favors softer equations of state, while the high measured masses of isolated neutron stars favor stiffer equations of state. In our approach, we parametrized the stiffness of the equation of state by using the speed of sound. Moreover, we used the two recent observations of binary neutron star mergers from LIGO/VIRGO, so that we can impose robust constraints on the speed of sound. Furthermore, we postulate the kind of future measurements that could be helpful by imposing more stringent constraints on the equation of state.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740015 ◽  
Author(s):  
Chang-Hwan Lee

With H. A. Bethe, G. E. Brown worked on the merger rate of neutron star binaries for the gravitational wave detection. Their prediction has to be modified significantly due to the observations of [Formula: see text] neutron stars and the detection of gravitational waves. There still, however, remains a possibility that neutron star-low mass black hole binaries are significant sources of gravitational waves for the ground-based detectors. In this paper, I review the evolution of neutron star binaries with super-Eddington accretion and discuss the future prospect.


Author(s):  
Luca Baiotti

AbstractI review the current global status of research on gravitational waves emitted from mergers of binary neutron star systems, focusing on general-relativistic simulations and their use to interpret data from the gravitational-wave detectors, especially in relation to the equation of state of compact stars.


2011 ◽  
Vol 20 (10) ◽  
pp. 2077-2100 ◽  
Author(s):  
C. J. HOROWITZ

At very high densities, electrons react with protons to form neutron-rich matter. This material is central to many fundamental questions in nuclear physics and astrophysics. Moreover, neutron-rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that uses parity violating electron scattering to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. We discuss X-ray observations of neutron star radii. These also have important implications for neutron-rich matter. Gravitational waves (GW) open a new window on neutron-rich matter. They come from sources such as neutron star mergers, rotating neutron star mountains, and collective r-mode oscillations. Using large scale molecular dynamics simulations, we find neutron star crust to be very strong. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, neutrinos from core collapse supernovae (SN) provide another, qualitatively different probe of neutron-rich matter. Neutrinos escape from the surface of last scattering known as the neutrino-sphere. This is a low density warm gas of neutron-rich matter. Neutrino-sphere conditions can be simulated in the laboratory with heavy ion collisions. Observations of neutrinos can probe nucleosyntheses in SN. Simulations of SN depend on the equation of state (EOS) of neutron-rich matter. We discuss a new EOS based on virial and relativistic mean field calculations. We believe that combing astronomical observations using photons, GW, and neutrinos, with laboratory experiments on nuclei, heavy ion collisions, and radioactive beams will fundamentally advance our knowledge of compact objects in the heavens, the dense phases of QCD, the origin of the elements, and of neutron-rich matter.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 101
Author(s):  
Jacopo Soldateschi ◽  
Niccolò Bucciantini

Neutron stars are known to contain extremely powerful magnetic fields. Their effect is to deform the shape of the star, leading to the potential emission of continuous gravitational waves. The magnetic deformation of neutron stars, however, depends on the geometry and strength of their internal magnetic field as well as on their composition, described by the equation of state. Unfortunately, both the configuration of the magnetic field and the equation of state of neutron stars are unknown, and assessing the detectability of continuous gravitational waves from neutron stars suffers from these uncertainties. Using our recent results relating the magnetic deformation of a neutron star to its mass and radius—based on models with realistic equations of state currently allowed by observational and nuclear physics constraints—and considering the Galactic pulsar population, we assess the detectability of continuous gravitational waves from pulsars in the galaxy by current and future gravitational waves detectors.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 97
Author(s):  
Nils Andersson

We provide a bird’s-eye view of neutron-star seismology, which aims to probe the extreme physics associated with these objects, in the context of gravitational-wave astronomy. Focussing on the fundamental mode of oscillation, which is an efficient gravitational-wave emitter, we consider the seismology aspects of a number of astrophysically relevant scenarios, ranging from transients (like pulsar glitches and magnetar flares), to the dynamics of tides in inspiralling compact binaries and the eventual merged object and instabilities acting in isolated, rapidly rotating, neutron stars. The aim is not to provide a thorough review, but rather to introduce (some of) the key ideas and highlight issues that need further attention.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


Sign in / Sign up

Export Citation Format

Share Document