scholarly journals Near-Infrared Images of the Serpens Molecular Cloud Core

1989 ◽  
Vol 120 ◽  
pp. 227-230
Author(s):  
C. Eiroa ◽  
M. Casali

ABSTRACT:Near-infrared images of the Serpens molecular cloud core have been carried out at UKIRT (Mauna Kea Observatory) using the infrared array camera, IRCAM. A large-scale diffuse nebulosity extending over the central part of the core is observed. Over 100 K-sources are detected in the 30 arc min2 cloud core. Some of them are PMS objects which were previously unknown. For the first time, a near-infrared counterpart of the far-infrared source Seroens FIRS1 has been detected. The 2.2 µm source appears as a point like object at the apex of an extended knotty, jet-like nebulosity oriented towards the northwest. In addition, a group of 11 stellar objects is seen in the position of the IR/radio source SVS4. These objects are embedded in a very faint nebulosity and form one of the densest clustering of young stars found in dark clouds.

1993 ◽  
Vol 10 (3) ◽  
pp. 236-240 ◽  
Author(s):  
T.L. Bourke ◽  
A.R. Hyland ◽  
G. Robinson ◽  
S.D. James

AbstractThe Parkes radio telescope has been used to search a list of small, dense southern dark clouds and Bok globules for ammonia emission at 23.7 GHz. The ammonia observations, together with IRAS data and the cloud’s visual appearance, have been used to determine a short list of dark clouds for observation with the infrared imaging system (IRIS) on the Anglo-Australian Telescope, in an attempt to determine the dust density distribution within the clouds. Near-infrared images of a number of the short listed clouds have been obtained with IRIS at J, H and K’. Preliminary results are reported for this ammonia survey, together with IRIS images of the strong ammonia source DC 297.7–2.8. Coincident with the dense ammonia core of this object is an IRAS ‘core’ source, IRAS 11590–6452 and an extremely interesting near-infrared source, which lies on the edge of the error ellipse of the IRAS source.


2021 ◽  
Vol 503 (1) ◽  
pp. 270-291
Author(s):  
F Navarete ◽  
A Damineli ◽  
J E Steiner ◽  
R D Blum

ABSTRACT W33A is a well-known example of a high-mass young stellar object showing evidence of a circumstellar disc. We revisited the K-band NIFS/Gemini North observations of the W33A protostar using principal components analysis tomography and additional post-processing routines. Our results indicate the presence of a compact rotating disc based on the kinematics of the CO absorption features. The position–velocity diagram shows that the disc exhibits a rotation curve with velocities that rapidly decrease for radii larger than 0.1 arcsec (∼250 au) from the central source, suggesting a structure about four times more compact than previously reported. We derived a dynamical mass of 10.0$^{+4.1}_{-2.2}$ $\rm {M}_\odot$ for the ‘disc + protostar’ system, about ∼33 per cent smaller than previously reported, but still compatible with high-mass protostar status. A relatively compact H2 wind was identified at the base of the large-scale outflow of W33A, with a mean visual extinction of ∼63 mag. By taking advantage of supplementary near-infrared maps, we identified at least two other point-like objects driving extended structures in the vicinity of W33A, suggesting that multiple active protostars are located within the cloud. The closest object (Source B) was also identified in the NIFS field of view as a faint point-like object at a projected distance of ∼7000 au from W33A, powering extended K-band continuum emission detected in the same field. Another source (Source C) is driving a bipolar $\rm {H}_2$ jet aligned perpendicular to the rotation axis of W33A.


2020 ◽  
Vol 501 (2) ◽  
pp. 2305-2315
Author(s):  
Alice Zurlo ◽  
Lucas A Cieza ◽  
Megan Ansdell ◽  
Valentin Christiaens ◽  
Sebastián Pérez ◽  
...  

ABSTRACT We present results from a near-infrared (NIR) adaptive optics (AO) survey of pre-main-sequence stars in the Lupus molecular cloud with NACO at the Very Large Telescope (VLT) to identify (sub)stellar companions down to ∼20-au separation and investigate the effects of multiplicity on circumstellar disc properties. We observe for the first time in the NIR with AO a total of 47 targets and complement our observations with archival data for another 58 objects previously observed with the same instrument. All 105 targets have millimetre Atacama Large Millimetre/sub-millimetre Array (ALMA) data available, which provide constraints on disc masses and sizes. We identify a total of 13 multiple systems, including 11 doubles and 2 triples. In agreement with previous studies, we find that the most massive (Mdust > 50 M⊕) and largest (Rdust > 70 au) discs are only seen around stars lacking visual companions (with separations of 20–4800 au) and that primaries tend to host more massive discs than secondaries. However, as recently shown in a very similar study of >200 PMS stars in the Ophiuchus molecular cloud, the distributions of disc masses and sizes are similar for single and multiple systems for Mdust < 50 M⊕ and radii Rdust < 70 au. Such discs correspond to ∼80–90 per cent of the sample. This result can be seen in the combined sample of Lupus and Ophiuchus objects, which now includes more than 300 targets with ALMA imaging and NIR AO data, and implies that stellar companions with separations >20 au mostly affect discs in the upper 10${{\ \rm per\ cent}}$ of the disc mass and size distributions.


2018 ◽  
Vol 234 (2) ◽  
pp. 42 ◽  
Author(s):  
Jungmi Kwon ◽  
Takao Nakagawa ◽  
Motohide Tamura ◽  
James H. Hough ◽  
Minho Choi ◽  
...  

1987 ◽  
Vol 115 ◽  
pp. 188-188
Author(s):  
M. Tapia ◽  
M. Roth ◽  
L.F. Rodríguez ◽  
J. Cantó ◽  
P. Persi ◽  
...  

GM24 is a small visible nebulosity in the vicinity of a molecular cloud. In this contribution we present the results of continuum (6-cm) and CO line (J = 1 → 0) radio observations, infrared maps, broad-band photometry and low-resolution spectroscopy as well as long-slit Echelle Ha spectroscopy. We found evidence that the GM24 = PP85 nebula is part of a larger region where star formation occurred in the past 104 years; the region is embedded in a typical molecular cloud with a dimension of ∼ 10 pc and mass of ∼104 M⊙. A compact radio H II region seems to be associated with GM24 and with one of the mid-infrared peaks detected. The nebula is most probably the visible part of an embedded H II region that is starting to emerge from the cloud. The other infrared peaks found in its vicinity (∼ 1 pc) are probably associated with less evolved stellar objects. The complex also shows an extended near-infrared flux which we believe to arise in a reflection nebula. From energy arguments, we found that the luminosity required to power the H II region and keep the cloud at the observed large temperature (TK ≅33 K), is ∼105 L⊙ which is consistent with the infrared total flux from the present measurements and those from IRAS of 4x104 L⊙; this corresponds to the flux of ∼3 BO ZAMS stars. The details of the present work have appeared in the Revista Mexicana de Astronomía y Astrofísica, Volume 11, 83, 1985.


1982 ◽  
Vol 258 ◽  
pp. 165 ◽  
Author(s):  
J. Fischer ◽  
R. R. Joyce ◽  
M. Simon ◽  
T. Simon

1989 ◽  
Vol 120 ◽  
pp. 128-128
Author(s):  
N.J. Evans

The NGC 2071 molecular cloud has been studied with a broad array of techniques, including a large scale study of CS emission, high resolution scans in the far-infrared, N H3 studies with the VLA, and near-infrarred imaging. The far-infrared emission constrains the density distribution to fall off approximately as r−1. The NH3 data strongly supports the presence of a disk oriented perpendicular to the molecular outflow, while the CS emission indicates the presence of dense gas in the region. The results will be combined into a coherent picture of this region of current star formation and molecular outflow.


1987 ◽  
Vol 115 ◽  
pp. 51-55
Author(s):  
Yoshio Tomita

Owing to the drastic progress in infrared and radio observations of molecular cloud cores, the scenario of starformation seems to have been almost completed. However, the study of dark clouds as a whole, which is a stage of the starformation drama, is observationally insufficient. In order to understand the environment of a starforming region, it is important to study the large scale structures of dark clouds. And that gives the information about formation and destruction mechanism of dark clouds.


Sign in / Sign up

Export Citation Format

Share Document