scholarly journals Rapid Profile Variations in the Broad Hα Line of the Seyfert Galaxy Markarian 6: Possible Evidence for Turbulence in the Accretion Disk

2002 ◽  
Vol 184 ◽  
pp. 359-360
Author(s):  
N. S. Asatrian ◽  
E. Ye. Khachikian ◽  
P. Notni

We report on implications for the geometrical and kinematic parameters of BLR gas on the basis of short timescale variability in the broad Hα profile shape. Data on rapid variations have been obtained at the 2.6−m telescope of the BAO (Asatrian, Khachikian & Notni, 1999). To search for variations in the profile, difference spectra (second minus first epoch) were examined. We believe that the structure of the underlying stellar continuum and the atmospheric features do not affect significantly the Hα difference profiles of Mark 6. Variations occurred simultaneously on the blue and red sides of Hα on a time scale of ≃ 50.7 minutes and take the form of three narrow, positive small bumps on each side in the difference spectrum. The positions of the bumps are −4400, −3100, −1700 and +1900, +4200 and +6600 kms−1. These changes may indicate the response of circularly rotating emitting gas at three orbits to a light pulse from a central source. In this case the pairs of blue and red bumps observed at −4400 and +6600, −3100 and +4200, and −1700 and 1900 km s−1 are formed in two opposite zones of gas close to the line of nodes. On the assumption that these orbits lie around a central massive object, orbital parameters (radii, velocities and inclination angles of orbital planes) of the clouds and the central mass can be found. The shift of each bump is defined by the combination of the relativistic Doppler effect due to the Keplerian orbital motion and the gravitational redshift. The six observed radial velocities are determined by six parameters: the orbital radii, R1, R2, R3 (or velocities, Vi, V2, V3) and the inclination angles i1, i2, i3 of the rotation planes. Thus, the expressions for the radial velocities form a system of six algebraic equations with six unknowns and can be solved. Using the difference of the orbital radii in absolute units (R3 − R1 = Δt C, where ΔtC, ≃ 50.7 minutes and C is the speed of light) we can derive the central mass M. Analytical solution gives: Error limits for the results are determined by the uncertainty of the input radial velocities, 300 km s−1. However, the value of the mass obtained is smaller by two orders of magnitude than the estimate for the dynamical mass of the nucleus of Mark 6 (M = 1 × 107M⊙ Dibai 1984). Such a low mass is excluded, therefore.

1970 ◽  
Vol 37 (2) ◽  
pp. 259-267 ◽  
Author(s):  
G. C. Cheeseman ◽  
Dorothy J. Knight

SummaryThe dissociation of casein aggregates by the detergent sodium dodecyl sulphate (SDS) gave rise to difference spectra and these spectra were characteristic for each of the different types of casein. Increase in absorption by the chromophore groups, tyrosine and tryptophan, when αs1- and β-casein aggregates were dissociated indicated binding of the detergent at regions of the molecule containing these residues. A decrease in absorption when κ-casein was dissociated indicated that the tyrosine and tryptophan residues were not in the region of the molecule to which the detergent was bound and that in the κ-casein aggregate these residues were in a more hydrophobic environment. Peaks on the difference spectra were obtained at 280 and 288 nm for αs1-casein and 284 and 291 nm for β-casein and troughs at 278 and 286 nm for κ-casein. The difference spectrum reached a maximum value when the αsl- and β-casein aggregates were dissociated and the further binding of SDS did not alter this value. The large negative change in the difference spectrum of κ-casein did not occur until after most of the aggregates were dissociated and did not reach a maximum until binding with SDS was complete. The value obtained for ΔOD was found to be temperature-dependent for β-casein-SDS interaction, but not for αs1- and κ-casein. Changes in spectra were also observed when αs1- and κ-casein interacted to form aggregates. The data obtained confirmed the importance of hydrophobic binding in casein aggregate formation and indicated the possible involvement of tyrosine and tryptophan residues in this binding.


Author(s):  
J. Bruley ◽  
D. B. Williams

This paper concerns the influence of sample thickness on spatial-difference spectra, and seeks to identify if an interface dependent signal may be generated as an artifact of grain boundary grooving. The spatial-difference profiling technique may be used to identify variations in composition and electronic structure across interfaces at sub-nanometer length scales. The signal-to-background ratios and hence visibility of small changes to the near-edge structure and edge intensities are enhanced using this technique by removing intense energy dependent backgrounds. These backgrounds are assumed to be only slowly varying with respect to the electron probe position. A spatial-difference spectrum is generated from the difference between two spectra after suitable normalization or scaling. This scaling is achieved by either matching intensities of the background prior to a characteristic absorption edge (for compositional profiles) or by normalizing to some characteristic structure of the near-edge structure (for bonding profiles). The latter is performed typically after subtraction of a smooth power-law background modeled in the region immediately preceding the edge.


2002 ◽  
Vol 184 ◽  
pp. 357-358
Author(s):  
N. S. Asatrian ◽  
E.Ye. Khachikian ◽  
P. Notni

We report on implications for the geometrical and kinematic parameters of BLR gas on the basis of short timescale variability in the broad Hβ profile.Data on rapid variations have been obtained at the 6-m telescope of the SAO (Asatrian, Khachikian & Notni, 1999). To search for variations in the profile shape, difference spectra (first minus second epoch) were examined. We believe that the structure of the underlying stellar continuum and the atmospheric features do not affect the Hβ difference profiles of 3C 390.3 significantly.Variations occurred simultaneously on the blue and red sides of Hβ on a timescale of ~ 1.452 hours and take the form of three narrow, positive and negative small bumps drifting across the line profile in the difference spectrum. The positions of the bumps are −2300, +4700 (negative) and −3700 kms2212;1 (positive).


2018 ◽  
Vol 615 ◽  
pp. A131 ◽  
Author(s):  
H. Lehmann ◽  
V. Tsymbal ◽  
F. Pertermann ◽  
A. Tkachenko ◽  
D. E. Mkrtichian ◽  
...  

R Canis Majoris is the prototype of a small group of Algol-type stars showing short orbital periods and low mass ratios. A previous detection of short-term oscillations in its light curve has not yet been confirmed. We investigate a new time series of high-resolution spectra with the aim to derive improved stellar and system parameters, to search for the possible impact of a third component in the observed spectra, to look for indications of activity in the Algol system, and to search for short-term variations in radial velocities. We disentangled the composite spectra into the spectra of the binary components. Then we analysed the resulting high signal-to-noise spectra of both stars. Using a newly developed program code based on an improved method of least-squares deconvolution, we were able to determine the radial velocities of both components also during primary eclipse. This allowed us to develop a better model of the system including the Rossiter–McLaughlin effect and to derive improved orbital parameters. Combining the results with those from spectrum analysis, we obtain accurate stellar and system parameters. We further deduce at least one oscillation frequency of 21.38 c d−1. It could be detected during primary eclipses only and confirms a previous photometric finding. Results point to an amplitude amplification of non-radial pulsation modes due to the eclipse mapping effect. The presence of a He I line in the spectra indicates mass transfer in the R CMa system. Calculations of its Roche geometry give evidence that the cool secondary component may fill its Roche lobe. No evidence of a third body in the system could be found in the observed spectra.


2012 ◽  
Vol 18 (3) ◽  
pp. 407-410
Author(s):  
Prabu Lakshmana ◽  
Suriya Prakash ◽  
A. Shanmugarathinam

A new simple, accurate, precise, highly sensitive and reproducible difference spectrophotometric method for the determination of leflunomide in bulk and pharmaceutical dosage form is described. Difference spectroscopic method is based on the principle that leflunomide exhibit two different forms; in acidic and basic medium which differs in their absorption spectra. The difference spectra were obtained by reading the absorbance of leflunomide in 0.1N HCl in the reference cell and the absorbance of leflunomide in 0.1N NaOH in the sample cell and vice versa; in the difference spectrum maxima and minima were seen at 293.5nm and at 261.5nm respectively. The amplitude values were calculated, which was plotted against concentration. The method is found to be linear in the concentration range of 2-12 ?g/ml. The percentage recovery was found to be between the ranges from 98.92 % to 99.08 %. The proposed method was statistically validated and successfully applied for analysis of tablet dosage forms.


2019 ◽  
pp. 122-127
Author(s):  
O.M. Vodin ◽  
O.S. Deiev ◽  
S.M. Olejnik

The bremsstrahlung spectra of medium-energy electrons (30…100 МeV) were calculated in GEANT4. Cross-sections for photonuclear reactions were calculated in TALYS1.9. A convolution over the energy of the cross-sections of one- and many-particle reactions with the bremsstrahlung flux density was performed. The numerical values of the yield of 93Nb(γ,xn)93-xNb reactions, the activity of irradiated 93Nb targets, and the average reaction cross-sections were obtained. The differences of the bremsstrahlung spectra from electrons with close initial energies were calculated. The shape of the difference spectra was analyzed. The contributions of the quanta of the low-energy part of the difference spectrum and the quasi-monochromatic peak of the difference spectrum to the total activity of the targets were compared. An approach for correction of the experimental cross-sections of photo-nuclear reactions using the method of "bremsstrahlung spectra difference" was considered.


1971 ◽  
Vol 26 (2) ◽  
pp. 106-112 ◽  
Author(s):  
C. Woenckhaus ◽  
D. Scherr

The coenzyme analogue nicotinamide 5-iodouracil-dinucleotide was synthesized by condensation of the two mononucleotides with dicyclohexylcarbodiimide in aqueous pyridine. The enzymatic properties of this compound were compared with those of the nicotinamide-uracil-dinucleotide. Both coenzyme analogues reacted slowly when functioning as a hydrogen carrier in enzymatic tests. The properties were similar to those of nicotinamide-benzimidazole-dinucleotide. The difference spectrum between the intact coenzyme analogue and its mononucleotides showed that the intramolecular interaction between the functional and non-functional moiety was smaller than that in NAD. The interaction corresponded to that of nicotinamide-benzimidazole-dinucleotide. The fluorescence excitation spectrum did not show any energy transfer from the non-functional iodouracil to the dihydronicotinamide part of the analogue. Difference spectra between the coenzyme - enzymecomplex and the two isolated components indicated that the unfolded dihydrocoenzyme was bound to the active site of lactate- and alcohol-dehydrogenase, respectively. Furthermore, they showed aromatic interaction of the non-functional part with parts of the protein. Introduction of iodine into the nicotinamide-uracil-dinucleotide did not remarkably alter the behavior of the analogues. As the iodine is bound very strongly to the coenzyme analogue, it may be useful for X-Ray-investigations of the dehydrogenases.


1968 ◽  
Vol 23 (2) ◽  
pp. 220-224 ◽  
Author(s):  
H. H. Stiehl ◽  
H. T. Witt

Plastoquinone PQ is engaged in photosynthesis 1. Difference spectra in the UV-region indicate that PQ is an intermediate in the electron transport chain 2. PQ is located as a pool between the two light reactions I and II 3. PQ is reduced by hνII and oxidized by hνI3. In this paper the difference spectra which occur during light excitation of spinach chloroplasts and chlorella vulgaris were measured in the UV-region with high resolution by the high sensitive method of periodical flash photometry 6.On excitation with long flashes (10—1 sec) the difference spectra are similar to those obtained when plastoquinone is reduced to hydroquinone in vitro (see figs. 1, 3 and 6). Deviations in the case of chlorella (fig. 4) are caused by additional NADP-reduction. After extraction of plastoquinone from chloroplasts the difference spectra do not occur during light excitation but they can be produced in full after reconstitution with synthetic plastoquinone A (see fig. 2).In the presents of far red background light (718 nm) which excites only light reaction I the magnitude of the spectrum is doubled (see fig. 3).By excitation with short flashes (10—5 sec), two different spectra were found. The difference spectrum with a life-time of 5 · 10—4 sec (fig. 7) is new and does not correspond to that of plastoquinone in vitro. The difference spectrum with a life-time of about 2·10—2 sec (fig. 5) corresponds to the plastoquinone reduction. The magnitude of this spectrum is ten times smaller than that obtained by excitation with long flashes (fig. 6).The 1:10 ratio of the magnitude of the spectra in short and long flashes can be interpreted by a pool of plastoquinone between the two light reactions with a dynamic capacity of ten electrons. The doubled magnitude of the spectra in far red background light can be interpreted by an electron acceptor pool for plastoquinone with a capacity of five electrons (see also the following papers).


Author(s):  
Tandra Sarkar ◽  
Atheni Konar ◽  
Nirmal Chandra Sukul ◽  
Anirban Sukul ◽  
Indrani Chakraborty ◽  
...  

Objective: Using Fourier Transform Infrared spectroscopy (FTIR) we have demonstrated that homeopathic potencies of Natrum mur, Cantharis, Nux vomica and Sulphur show differences with respect to the number of free water molecules and strength of hydrogen bonding. The purpose of the present study is to confirm this phenomenon in three potencies of two more drugs Calcarea carb and Silicea. Design: The potencies used for each of the two drugs were 30cH, 200cH and 1000cH. The control was 90% ethanol as also the potentized drugs. The control, as well as the potencies, were diluted with distilled water to reduce the level of ethanol to 0.03 molar fraction in each of them. FTIR spectra of all the potentized drugs, control and sterile distilled water (reference water) were taken in the wave number region of 4000-2800 cm-1. The full width at half maximum (fwhm) of OH band was measured for each spectrum. The width was divided into two in the middle. The difference spectrum (absorbance of drug solution - absorbance of reference water) for each potency and the control was obtained after normalization of the spectrum at 3410 cm-1. One difference spectrum so obtained for a potency was subtracted from another to find out if there is a difference between two different potencies. Results: The half width half maximum (hwhm) in both the high and low-frequency sides of the OH band is far less narrow in potencies than in the control as compared to that in water. The difference spectra for different potencies show different levels of fall in intensity at the wave number region of dip at 3630 cm-1. The level of dip at 3630 cm-1 and subsequent rise in intensity in the lower frequency region represent the quantity of free water molecules and strong alcoholic OH bond around 3250 cm-1, respectively. The results of subtraction between two different potencies are not zero but have marked positive or negative values. Conclusion (i) Potencies have stronger intermolecular interactions and a higher number of chemical environments than the control, as revealed by the data on hwhm. (ii) The three potencies of each of the two drugs show distinct variation in the number of free water molecules and strength of hydrogen bonding. (iii) There exists both inter-drug and inter-potency variation as revealed by the difference spectra and results of subtraction between two difference spectra.


2000 ◽  
Vol 54 (2) ◽  
pp. 214-220 ◽  
Author(s):  
M. W. C. Wahls ◽  
E. Kenttä ◽  
J. C. Leyte

Experimental photoacoustic (PA) magnitude spectra of a coated paper and the uncoated basepaper are presented. The normalized and scaled PA magnitude spectra are used to calculate difference magnitude spectra. It was decided to scale all PA magnitude spectra to (low) equal intensity at the approximately optically thin spectral range before subtraction. Then no infrared (IR) bands of identical band shape and height (as needed for common difference spectroscopy) in either PA magnitude spectrum are needed. Contributions of the two individual layers to the IR-PA magnitude spectrum of the coated paper are separated in the difference spectrum by their sign. An increasing relative contribution of the coating layer with an increasing phase modulation frequency is found. On decreasing the thermal length to a value near the coating thickness, the difference spectra increasingly show positive coating bands and negative bulk signals. The extension of the Rosencwaig–Gersho theory to a double-layered system introduced by N. C. Fernelius [J. Opt. Soc. Am. 70, 480 (1980) and J. Appl. Phys. 50, 650 (1980)] applied to synthetic spectra confirms the experimental observation. It is found that photoacoustic difference spectroscopy may provide quantitative depth-resolved spectral information due to the presented scaling procedure, and photoacoustic difference magnitude spectra of any polymeric laminate may therefore be calculated.


Sign in / Sign up

Export Citation Format

Share Document