scholarly journals Mid-IR Imaging of AGB Stars and Circumstellar Modelling

1995 ◽  
Vol 155 ◽  
pp. 429-430
Author(s):  
M. Busso ◽  
L. Origlia ◽  
G. Silvestro ◽  
M. Marengo ◽  
P. Persi ◽  
...  

The evolution of low and intermediate mass (1-8 M⊙) stars along the Asymptotic Giant Branch (AGB) is ruled by processes of mass loss, causing the whole convective envelope to be gradually ejected into space. If the stellar mass is sufficiently high (M ≥ 1.5 M⊙) the envelope itself becomes enriched in nucleosynthesis products (carbon and s-process nuclei) and the star evolves into a C-rich phase. AGB stars are hence surrounded by O-rich or C-rich envelopes, opaque at optical wavelengths, which are best studied through direct imaging in the infrared (IR).

2016 ◽  
Vol 822 (2) ◽  
pp. 73 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

2011 ◽  
Vol 7 (S281) ◽  
pp. 36-43
Author(s):  
Paola Marigo

AbstractCombining recent mass determinations of Galactic CO white dwarfs and their progenitors with the latest evolutionary models for Asymptotic Giant Branch (AGB) stars, I review the initial-final mass relation (IFMR) of low- and intermediate-mass stars. In particular, I analyze the impact on the IFMR produced by a few critical processes characterizing the AGB phase, namely: the second and third dredge-up events, hot-bottom burning, and mass loss. Their dependence on metallicity and related theoretical uncertainties are briefly discussed.


2003 ◽  
Vol 209 ◽  
pp. 82-82 ◽  
Author(s):  
A. I. Karakas ◽  
J. C. Lattanzio ◽  
O. R. Pols

We present new evolutionary sequences for low and intermediate mass stars (1M⊙ to 6M⊙) for three different metallicities, z = 0.02, 0.008 and 0.004. We evolve the models from the pre-main sequence to the thermally-pulsing asymptotic giant branch (AGB) phase. We have two sequences of models for each mass, one which includes mass-loss and one without mass-loss. For an overview of AGB evolution and nucleosynthesis, see Herwig (2002) and Lattanzio (2002).


2006 ◽  
Vol 2 (S239) ◽  
pp. 258-265
Author(s):  
Paolo Ventura

AbstractThe modeling of the Asymptotic Giant Branch phase is made highly uncertain by some still unsolved issues related to the input macro-physics used to calculate the stellar evolution, namely mass loss, nuclear cross sections, overshooting and convective modeling. We show that in the massive intermediate mass models, which achieve at the bottom of their convective envelope temperatures sufficiently high to favour an advanced nucleosynthesis, the treatment of convection plays a major role in determining the physical and chemical evolution of the stellar models during this evolutionary phase.


2017 ◽  
Vol 14 (S339) ◽  
pp. 95-97
Author(s):  
S. Höfner

AbstractEvolved low- and intermediate-mass stars that have reached the Asymptotic Giant Branch (AGB) phase tend to show pronounced long-period variability due to large-amplitude pulsations. Those pulsations are considered to play a key role in triggering mass loss through massive dusty winds. The winds enrich the surrounding interstellar medium with newly-produced chemical elements and dust grains, providing building blocks for new generations of stars and planets. Considerable efforts are being made to understand the physics of AGB stars, and to develop quantitative models. This talk gave a brief summary of recent developments, with references to the literature.


2009 ◽  
Vol 26 (3) ◽  
pp. 161-167 ◽  
Author(s):  
S. Palmerini ◽  
M. Busso ◽  
E. Maiorca ◽  
R. Guandalini

AbstractWe present computations of nucleosynthesis in red giants and Asymptotic Giant Branch (AGB) stars of Population I experiencing extended mixing. The assumed physical cause for mass transport is the buoyancy of magnetized structures, according to recent suggestions. The peculiar property of such a mechanism is to allow for both fast and slow mixing phenomena, as required for reproducing the spread in Li abundances displayed by red giants and as discussed in an accompanying paper. We explore here the effects of this kind of mass transport on CNO and intermediate-mass nuclei and compare the results with the available evidence from evolved red giants and from the isotopic composition of presolar grains of AGB origin. It is found that a good general accord exists between predictions and measurements; in this framework we also show which type of observational data best constrains the various parameters. We conclude that magnetic buoyancy, allowing for mixing at rather different speeds, can be an interesting scenario to explore for explaining together the abundances of CNO nuclei and of Li.


1991 ◽  
Vol 145 ◽  
pp. 257-274
Author(s):  
Icko Iben

A brief review is given of the structure of asymptotic giant branch (AGB) stars and of the characteristics of the thermal pulses which these stars experience. Following a pulse, model AGB stars with a large core mass easily dredge up fresh carbon, which is the main product of incomplete helium burning, and s-process isotopes, which are made as a consequence of the activation of the 22Ne neutron source. Model AGB stars of small core mass activate the 13C neutron source and produce s-process isotopes in nearly the solar system distribution. They also dredge up fresh carbon and s-process isotopes, but only if overshoot or some other form of “extra” mixing beyond the lower boundary of the convective envelope is invoked.


2018 ◽  
Vol 14 (S343) ◽  
pp. 36-46
Author(s):  
Marcelo M. Miller Bertolami

AbstractThe transition from the asymptotic giant branch (AGB) to the final white dwarf (WD) stage is arguably the least understood phase in the evolution of single low- and intermediate-mass stars (0.8 ≲ MZAMS/M⊙ ≲ 8…10). Here we briefly review the progress in the last 50 years of the modeling of stars during the post-AGB phase. We show that although the main features, like the extreme mass dependency of post-AGB timescales were already present in the earliest post-AGB models, the quantitative values of the computed post-AGB timescales changed every time new physics was included in the modeling of post-AGB stars and their progenitors. Then we discuss the predictions and uncertainties of the latest available models regarding the evolutionary timescales of post-AGB stars.


1984 ◽  
Vol 105 ◽  
pp. 3-19
Author(s):  
Icko Iben

Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22Ne(α, n)25Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13C(α, n) 16O reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes. After the dredge-up phase following each pulse, the 13C is made by the reactions 12C(p,γ) 13N(β+ v) 13C in a zone of large 12C abundance and small 1H abundance that has been established by semiconvective mixing during the dredge-up phase. There is qualitative accord between the properties of carbon stars in the Magellanic Clouds and properties of model stars, but considerably more theoretical work is required before a quantitative match is achieved.The observed paucity of AGB stars more luminous than MBOL ∼ −6 is interpreted to mean that the AGB lifetime of a star more luminous than this is at least a factor of ten smaller than the AGB lifetime of stars less luminous than this, or, at most 105 yr. Since, with current estimates of the 22Ne(α, n)25Mg reaction rate R22, only AGB model stars more luminous than MBOL ∼ −6 can produce s-process isotopes in the solar system distribution, it is inferred that either (1) the current estimates of R22 are too small by one to two orders of magnitude, allowing less luminous AGB stars to contribute, (2) the solar system distribution is not equivalent to the average Galactic distribution, being rather the consequence of a unique injection into the protosolar nebula of matter from a massive intermediate-mass AGB star, or (3) the estimates of the temperatures in the convective shell that are given by extant models are too low by, sav, 10 or 15 percent.The absence of carbon stars more luminous than MBOL ∼ −6 is suggested to be due primarily to the fact that ∼ 106 yr of AGB evolution is necessary to produce surface C/O > 1, rather than to be due to the burning of dredged-up carbon into nitrogen at the base of the convective envelope during the interpulse quiescent hydrogen-burning phase. Thus, the positive correlation between the nitrogen and helium abundances in planetary nebulae is perhaps primarily a consequence of the second dredge-up episode rather than a consequence of processes occurring during the thermally pulsing phase.


2003 ◽  
Vol 209 ◽  
pp. 123-126
Author(s):  
Yvonne Simis

In a previous paper (Simis, Icke, & Dominik 2001, hereafter SID2001), it was shown that the concentric, quasi-periodic shells around IRC +10216 seem to originate on the AGB, as an instability in the wind. In this contribution a grid of model calculations is used to investigate the formation mechanism further. Comparing the calculations leads to the conclusion that mass loss variability on the AGB, and hence the formation of shells, is more likely to occur for relatively high stellar mass and temperature, and low luminosity than for lower mass and temperature and higher luminosity.


Sign in / Sign up

Export Citation Format

Share Document