scholarly journals A Millisecond Pulsar Progenitor to an Ultra-Compact Low-Mass X-ray Binary

1996 ◽  
Vol 160 ◽  
pp. 521-522
Author(s):  
S. C. Lundgren ◽  
E. Ergma ◽  
J. M. Cordes

AbstractWe discuss a twist in binary neutron star evolution scenarios in which a millisecond pulsar system is actually aprogenitorfor a low-mass X-ray binary system. After 7 billion years of orbital decay due to gravitational radiation, the millisecond pulsar PSR J0751+1807 will enter a low-mass X-ray binary phase. When the orbital period reaches about 5 minutes, the white dwarf will overflow its Roche lobe, transferring mass to the neutron star. Its predicted observational X-ray parameters are very similar to the ultra-compact low-mass X-ray binary 1820–303. The ultimate fate of the system after Roche-lobe overflow is unknown. One possibility is that the companion may eventually tidally disrupt, leaving a disk of material which could form into planets.

2019 ◽  
Vol 23 ◽  
pp. 100
Author(s):  
Ch. C. Moustakidis ◽  
M. C. Papazoglou

The gravitational radiation has been proposed a long time before, as an explana- tion for the observed relatively low spin frequencies of young neutron stars and of accreting neutron stars in low-mass X-ray binaries as well. In the present work we studied the effects of the neutron star equation of state on the r-mode instability window of rotating neutron stars.


2012 ◽  
Vol 8 (S290) ◽  
pp. 141-144
Author(s):  
T. M. Tauris

AbstractFor many years it has been recognized that the terminal stages of mass transfer in a low-mass X-ray binary (LMXB) should cause the magnetosphere of the accreting neutron star to expand, leading to a braking torque acting on the spinning pulsar. After the discovery of radio millisecond pulsars (MSPs) it was therefore somewhat a paradox (e.g. Ruderman et al. 1989) how these pulsars could retain their fast spins following the Roche-lobe decoupling phase, RLDP. Here I present a solution to this so-called “turn-off problem” which was recently found by combining binary stellar evolution models with torque computations (Tauris 2012). The solution is that during the RLDP the spin equilibrium of the pulsar is broken and therefore it remains a fast spinning object. I briefly discuss these findings in view of the two observed spin distributions in the populations of accreting X-ray millisecond pulsars (AXMSPs) and radio MSPs.


2020 ◽  
Vol 501 (1) ◽  
pp. 168-178
Author(s):  
Chen Li ◽  
Guobao Zhang ◽  
Mariano Méndez ◽  
Jiancheng Wang ◽  
Ming Lyu

ABSTRACT We have found and analysed 16 multipeaked type-I bursts from the neutron-star low-mass X-ray binary 4U 1636 − 53 with the Rossi X-ray Timing Explorer (RXTE). One of the bursts is a rare quadruple-peaked burst that was not previously reported. All 16 bursts show a multipeaked structure not only in the X-ray light curves but also in the bolometric light curves. Most of the multipeaked bursts appear in observations during the transition from the hard to the soft state in the colour–colour diagram. We find an anticorrelation between the second peak flux and the separation time between two peaks. We also find that in the double-peaked bursts the peak-flux ratio and the temperature of the thermal component in the pre-burst spectra are correlated. This indicates that the double-peaked structure in the light curve of the bursts may be affected by enhanced accretion rate in the disc, or increased temperature of the neutron star.


Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


2013 ◽  
Vol 436 (3) ◽  
pp. 2465-2483 ◽  
Author(s):  
F. Bernardini ◽  
E. M. Cackett ◽  
E. F. Brown ◽  
C. D'Angelo ◽  
N. Degenaar ◽  
...  
Keyword(s):  
X Ray ◽  

2020 ◽  
Vol 501 (1) ◽  
pp. 1453-1462
Author(s):  
A S Parikh ◽  
N Degenaar ◽  
J V Hernández Santisteban ◽  
R Wijnands ◽  
I Psaradaki ◽  
...  

ABSTRACT The accretion behaviour in low-mass X-ray binaries (LMXBs) at low luminosities, especially at <1034 erg s−1, is not well known. This is an important regime to study to obtain a complete understanding of the accretion process in LMXBs, and to determine if systems that host neutron stars with accretion-heated crusts can be used probe the physics of dense matter (which requires their quiescent thermal emission to be uncontaminated by residual accretion). Here, we examine ultraviolet (UV) and X-ray data obtained when EXO 0748–676, a crust-cooling source, was in quiescence. Our Hubble Space Telescope spectroscopy observations do not detect the far-UV continuum emission, but do reveal one strong emission line, C iv. The line is relatively broad (≳3500 km s−1), which could indicate that it results from an outflow such as a pulsar wind. By studying several epochs of X-ray and near-UV data obtained with XMM–Newton, we find no clear indication that the emission in the two wavebands is connected. Moreover, the luminosity ratio of LX/LUV ≳ 100 is much higher than that observed from neutron star LMXBs that exhibit low-level accretion in quiescence. Taken together, this suggests that the UV and X-ray emission of EXO 0748–676 may have different origins, and that thermal emission from crust-cooling of the neutron star, rather than ongoing low-level accretion, may be dominating the observed quiescent X-ray flux evolution of this LMXB.


1987 ◽  
Vol 125 ◽  
pp. 199-199
Author(s):  
J. Shaham ◽  
M. Tavani

Spectral observations of low-mass X-ray binaries (LMXBs) show that the soft component usually dominates over the hard one. These results provide additional support to an interpretation based on models of LMXBs in which the neutron star while, on the average, spinning up, is also experiencing a spinning down torque. Under these conditions, a fraction of the luminosity associated with the gravitational release of energy on the surface of the accreting neutron star may manifest itself as luminosity originating in the inner part of the accretion disk. It is probably possible to separate the two contributions; the stellar luminosity can be associated with the hard component of the spectrum and the disk luminosity, related to the exchange of energy due to the torque between the rapidly spinning neutron star and the accretion disk, can be associated with the soft spectral component.


2009 ◽  
Vol 692 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Jeroen Homan ◽  
David L. Kaplan ◽  
Maureen van den Berg ◽  
Andrew J. Young
Keyword(s):  
X Ray ◽  

2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


Sign in / Sign up

Export Citation Format

Share Document