scholarly journals X-Ray Flares and Outflows Driven by Magnetic Interaction Between a Protostar and its Surrounding Disk

1997 ◽  
Vol 163 ◽  
pp. 717-718
Author(s):  
Mitsuru Hayashi ◽  
Kazunari Shibata ◽  
Ryoji Matsumoto

AbstractHere we present a model of hard X-ray flares and hot plasma outflows (optical jets) observed in protostars. Assuming that the dipole magnetic field of a protostar threads the protostellar disk, we carried out 2.5-dimensional magnetohydrodynamic (MHD) simulations of the diskstar interaction. The closed magnetic loops connecting the central star and the disk are twisted by the rotation of the disk. In the presence of resistivity, magnetic reconnection takes place in the current sheet formed inside the expanding loops. Hot, outgoing plasmoid and post flare loops are formed as a result of the reconnection. Numerical results are consistent with the observed plasma temperature (107 – 108K), the length of the flaring loop (1011 – 1012cm), and the speed of optical jets (200 – 400 km s−1 ).

2014 ◽  
Vol 70 (a1) ◽  
pp. C165-C165
Author(s):  
Michał Stękiel ◽  
Radosław Przeniosło ◽  
Dariusz Wardecki ◽  
Thomas Buslaps ◽  
Jacek Jasiński

The magnetic interaction between the crystallites of weak ferromagnetic α-Fe2O3 has been studied by combining SR based X-ray diffraction with an externally applied magnetic field. The measurements were performed with several polycrystalline α-Fe2O3 [1,2] samples (dry or in suspensions) placed in a half-filled cylindrical container in ambient conditions. The axis of the cylindrical container was oriented vertically parallel to the applied dc magnetic field. The polycrystalline sample had a free surface, so the α-Fe2O3 crystallites were free to move. The full Debye-Scherrer diffraction rings were measured with a 2D pixel detector at the beamline ID-15B at ESRF. In the absence of the magnetic field the intensity distribution over azimuthal angle was a uniform, i.e. there was no texture. The applied maximal field, B=0.9T was too small to change the magnetic ordering of α-Fe2O3 but it was sufficiently strong to reorient large amount of crystallites in order to minimize the angle between their ferromagnetic moment direction and the external field. Pronounced texture patterns with clear maxima in the angular distribution of the intensity across each Debye-Scherrer ring were observed. The observed textured intensity distribution was analyzed quantitatively by using a model based on the magnetic anisotropy observed in single crystals of α-Fe2O3. The analysis yielded two important parameters: (i) the width of the angular distribution of the ferromagnetic moments directions around the external field direction, and (ii) the relative quantity of the crystallites that did reorient in the external field. The α-Fe2O3 samples were also characterized with TEM technique. The analysis of X-ray and TEM studies provide new conclusions about the magnetic interaction between the α-Fe2O3 crystallites [3]. The proposed measurement technique can be applied to study other weak ferromagnetic materials.


2015 ◽  
Vol 11 (S320) ◽  
pp. 382-387
Author(s):  
Scott J. Wolk ◽  
Ignazio Pillitteri ◽  
Katja Poppenhaeger

AbstractSince soon after the discovery of hot Jupiters, it had been suspected that interaction of these massive bodies with their host stars could give rise to observable signals. We discuss the observational evidence for star-planet interactions (SPI) of tidal and magnetic origin observed in X-rays and FUV. Hot Jupiters can significantly impact the activity of their host stars through tidal and magnetic interaction, leading to either increased or decreased stellar activity – depending on the internal structure of the host star and the properties of the hosted planet. In HD 189733, X-ray and FUV flares are preferentially in a very restricted range of planetary phases. Matsakos et al. (2015) show, using MHD simulations, planetary gas can be liberated, forming a stream of material that gets compressed and accretes onto the star with a phase lag of 70-90 degrees. This scenario explains many features observed both in X-rays and the FUV (Pillitteri et al. 2015). On the other hand, WASP-18 – an F6 star with a massive hot Jupiter, shows no signs of activity in X-rays or UV. Several age indicators (isochrone fitting, Li abundance) point to a young age (~0.5 –1.0 Gyr) and thus significant activity was expected. In this system, tidal SPI between the star and the very close-in and massive planet appears to destroy the formation of magnetic dynamo and thus nullify the stellar activity.


2020 ◽  
Vol 499 (3) ◽  
pp. 4213-4222
Author(s):  
I Ramírez-Ballinas ◽  
J Reyes-Iturbide ◽  
P Ambrocio-Cruz ◽  
R Gabbasov ◽  
M Rosado

ABSTRACT We present observations in X-ray and optical emission of the supernova remnant (SNR) 0520–69.4 in the Large Magellanic Cloud. Using XMM–Newton observatory data, we produced images of the diffuse X-ray emission and spectra to obtain the X-ray parameters, such as luminosity and temperature, of hot plasma in the SNR. Diffuse X-ray emission with filled-centre morphology goes beyond the Hα region, suggesting that the hot gas escapes through the pores of the Hα shell. We fitted a model that has a plasma temperature of 1.1 × 107 K for an X-ray thermal luminosity of 3.3 × 1035 erg s−1. However, from Hα and [O iii] Fabry–Perot observations obtained with the Marseille Hα Survey of the Magellanic Clouds and the Milky Way at La Silla, European Southern Observatory, we are able to obtain physical parameters such as the velocity of the shock induced in the cloudlets emitting at optical wavelengths and the electron density of this gas. With the parameters described above, we test the model proposed by White & Long (1991, ApJ, 373, 543) for explaining the mixed-morphology observed.


1993 ◽  
Vol 141 ◽  
pp. 291-294
Author(s):  
J W Brosius ◽  
J M Davila ◽  
H P Jones ◽  
W T Thompson ◽  
R J Thomas ◽  
...  

AbstractWe obtained simultaneous images of solar plage on 7 May 1991 with Goddard Space Flight Center’s Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and the NASA/NSO spectromagnetograph at Kitt Peak. Using intensity ratios of Fe XVI to Fe XV emission lines, we find that the coronal plasma temperature is 2.5 ± 0.3 ×lO6 K throughout the region. The column emission measure ranges from 2.6 × 1027 to 1.3 × 1028 cm−5. The calculated structure and intensity of the 20 cm wavelength thermal bremsstrahlung emission from the hot plasma observed by SERTS is quite similar to the observed structure and intensity of the 20 cm microwave emission observed by the VLA. Using the revised coronal iron abundance of Meyer (1991, 1992), we find no evidence for either cool absorbing plasma or for contributions from thermal gyroemission. Combining the observed microwave polarization and the SERTS plasma parameters, we calculate a map of the coronal longitudinal magnetic field. The resulting values, ~ 30 – 60 Gauss, are comparable to extrapolated values of the potential field at heights of 5,000 and 10,000 km.


1998 ◽  
Vol 188 ◽  
pp. 269-270 ◽  
Author(s):  
S. Tanuma ◽  
T. Yokoyama ◽  
T. Kudoh ◽  
K. Shibata ◽  
R. Matsumoto ◽  
...  

We present a scenario for the origin of the hot plasma in our Galaxy, as a model of a strong X-ray emission (LX(2 – 10keV) ~ 1038 erg s−1), called Galactic Ridge X-ray Emission (GRXE), which has been observed near the Galactic plane. GRXE is thermal emission from hot component (~ 7 keV) and cool component (~ 0.8 keV). Observations suggest that the hot component is diffuse, and is not escaping away freely. Both what heats the hot component and what confines it in the Galactic ridge are still remained puzzling, while the cool component is believed to be made by supernovae. We propose a new scenario: the hot component of GRXE plasma is heated by magnetic reconnection, and confined in the helical magnetic field produced by magnetic reconnection or in the current sheet and magnetic field. We solved also the 2-dimensional magnetohydrodynamic (MHD) equations numerically to study how the magnetic reconnection creates hot plasmas and magnetic islands (helical tubes), and how the magnetic islands confine the hot plasmas in Galaxy. We conclude that the magnetic reconnection is able to heat up the cool component to hot component of GRXE plasma if the magnetic field is localized into intense flux tube with Blocal ~ 30 μG (the volume filling factor of f ~ 0.1).


2013 ◽  
Vol 22 (13) ◽  
pp. 1330024 ◽  
Author(s):  
ROBERTO TUROLLA ◽  
PAOLO ESPOSITO

It is now widely accepted that soft gamma repeaters and anomalous X-ray pulsars are the observational manifestations of magnetars, i.e. sources powered by their own magnetic energy. This view was supported by the fact that these "magnetar candidates" exhibited, without exception, a surface dipole magnetic field (as inferred from the spin-down rate) in excess of the electron critical field (≃ 4.4×1013 G). The recent discovery of fully qualified magnetars, SGR 0418+5729 and Swift J1822.3-1606, with dipole magnetic field well in the range of ordinary radio pulsars posed a challenge to the standard picture, showing that a very strong field is not necessary for the onset of magnetar activity (chiefly bursts and outbursts). Here we summarize the observational status of the low-magnetic-field magnetars and discuss their properties in the context of the mainstream magnetar model and its main alternatives.


1990 ◽  
Vol 139 ◽  
pp. 414-415
Author(s):  
Hitoshi Hanami

X-ray observations have demonstrated that the intergalactic medium in many clusters (cf. Coma, Perseus) contains a thin, hot plasma that may be produced by the accretion process in the gravitational potential of clusters with radiative cooling; this is usually called “cooling flows” (Fabian, Nulsen, and Canizares 1984; Sarazin 1986). On the other hand, the existence of radio halos in some clusters has been reported (Coma: Jaffe, Perola, and Valentijn 1976; A401: Roland et al. 1981). In addition, many elliptical galaxies in the center of clusters are also strong synchrotron radio sources. These radio emissions provide evidence for large amounts of relativistic electrons associated with the active phenomena in or around these galaxies and clusters. We can estimate the values or limits on the magnetic field in the cluster from the limits on the inverse Compton X-ray emission with the synchrotron radio emission (cf. Jaffe 1980). The intracluster field strength Bo is roughly 1 μG. It has been suggested that the influence of cosmic rays and magnetic fields is important for the properties and dynamics of the intercluster medium (Böhringer and Morfill 1988; Soker and Sarazin 1989). If cooling flows are real, this inward flow can impede the escape of the cosmic rays from the central galaxies in clusters and enhance the magnetic field. The confinement of the cosmic rays and the magnetic field in the center of clusters affects the gas of the intracluster medium.


2013 ◽  
Vol 9 (S303) ◽  
pp. 449-453
Author(s):  
Shogo Nishiyama ◽  
Kazuki Yasui ◽  
Tetsuya Nagata ◽  
Tatsuhito Yoshikawa ◽  
Hideki Uchiyama ◽  
...  

AbstractThe origin of the Galactic center diffuse X-ray emission (GCDX) is still under intense investigation. We have found a clear excess in a longitudinal GCDX profile over a stellar number density profile in the nuclear bulge region, suggesting a significant contribution of diffuse, interstellar hot plasma to the GCDX. We have estimated that contributions of an old stellar population to the GCDX are ∼50% and ∼20% in the nuclear stellar disk and nuclear star cluster, respectively. Our near-infrared polarimetric observations show that the GCDX region is permeated by a large scale, toroidal magnetic field. Together with observed magnetic field strengths in nearly energy equipartition, the interstellar hot plasma could be confined by the toroidal magnetic field.


2017 ◽  
Vol 605 ◽  
pp. A39 ◽  
Author(s):  
S. S. Tsygankov ◽  
V. Doroshenko ◽  
A. A. Lutovinov ◽  
A. A. Mushtukov ◽  
J. Poutanen

2012 ◽  
Vol 8 (S291) ◽  
pp. 115-115
Author(s):  
Simone Dall'Osso

AbstractMagnetic field decay in neutron stars has been a long debated subject, since the early realization that radio pulsars were likely spinning neutron stars endowed with a 1E12 G magnetic dipole. This problem has however eluded all attempts of solution so far, mostly due to the scarcity of observational indications. Here I discuss the observational evidence for decay of the dipole magnetic field in magnetar candidates (Soft Gamma Repeaters and Anomalous X-ray Pulsars) and present a quantitative study of its main properties. I show that the decaying dipole does not have enough energy to power the persistent X-ray emission of magnetars. The latter must thus directly reveal the decay of an additional, stronger field component, presumably hidden in the interior of these neutron stars. Using existing models it is possible to characterize the salient properties of this internal field component and their implications for magnetar astrophysics. Finally, I sketch preliminary considerations on evolutionary links between magnetars and other classes of neutron stars with strong dipole field that do not show magnetar-like activity.


Sign in / Sign up

Export Citation Format

Share Document