scholarly journals Averaging of Earth-Crossing Orbits

1999 ◽  
Vol 172 ◽  
pp. 433-434
Author(s):  
G.F. Gronchi ◽  
A. Milani

The orbits of planet-crossing asteroids (and comets) can undergo close approaches and collisions with some major planet. This introduces a singularity in the N-body Hamiltonian, and the averaging of the equations of motion, traditionally used to compute secular perturbations, is undefined. We have shown (Gronchi and Milani, 1998) that it is possible to define in a rigorous way some generalised averaged equations of motion, in such a way that the generalised solutions are unique and piecewise smooth, with corners on the node crossing lines.The model is the averaged equations of motion first introduced by Kozai (1962): the perturbing planets are assumed to move in circular, coplanar orbits, and the equations of motion are averaged over the anomalies of the asteroid and of the planets. In the non-crossing case the averaging is integrable; in the planet-crossing case there is a polar singularity of order two in the equations of motion, and averaging is not possible. To define a generalized solution, we decrease the order of the polar singularity by the method of extraction of the singularities by Kantorovich. The singularity of the perturbing function is approximated by a modified inverse distance, the one between the straight lines tangent to the two orbits at the nodal points. In this approximation the averaged perturbing function has an analytical expression, allowing explicit computation with elliptic integrals and elementary functions.

2006 ◽  
Vol 6 (1) ◽  
pp. 155-165 ◽  
Author(s):  
D. Naef ◽  
D. Rickenmann ◽  
P. Rutschmann ◽  
B. W McArdell

Abstract. This paper describes a one-dimensional finite element code for debris flows developed to model the flow within a steep channel and the stopping conditions on the fan. The code allows the systematic comparison of a wide variety of previously proposed one-phase flow resistance laws using the same finite element solution method. The one-dimensional depth-averaged equations of motion and the numerical model are explained. The model and implementation of the flow resistance relations was validated using published analytical results for the dam break case. Reasonable agreement for the front velocities and stopping location for a debris-flow event in the Kamikamihori torrent in Japan can be achieved with turbulent flow resistance relations including "stop" terms which allow the flow to come to rest on a gently sloping surface. While it is possible to match the overall bulk flow behavior using relatively simple flow resistance relations, they must be calibrated. A sensitivity analysis showed that the shape of the upstream input hydrograph does not much affect the flow conditions in the lower part of the flow path, whereas the event volume is much more important.


2010 ◽  
Vol 656 ◽  
pp. 337-341 ◽  
Author(s):  
PAOLO LUCHINI ◽  
FRANÇOIS CHARRU

Section-averaged equations of motion, widely adopted for slowly varying flows in pipes, channels and thin films, are usually derived from the momentum integral on a heuristic basis, although this formulation is affected by known inconsistencies. We show that starting from the energy rather than the momentum equation makes it become consistent to first order in the slowness parameter, giving the same results that have been provided until today only by a much more laborious two-dimensional solution. The kinetic-energy equation correctly provides the pressure gradient because with a suitable normalization the first-order correction to the dissipation function is identically zero. The momentum equation then correctly provides the wall shear stress. As an example, the classical stability result for a free falling liquid film is recovered straightforwardly.


Author(s):  
Андрей Геннадьевич Деменков ◽  
Геннадий Георгиевич Черных

С применением математической модели, включающей осредненные уравнения движения и дифференциальные уравнения переноса нормальных рейнольдсовых напряжений и скорости диссипации, выполнено численное моделирование эволюции безымпульсного закрученного турбулентного следа с ненулевым моментом количества движения за телом вращения. Получено, что начиная с расстояний порядка 1000 диаметров от тела течение становится автомодельным. На основе анализа результатов численных экспериментов построены упрощенные математические модели дальнего следа. Swirling turbulent jet flows are of interest in connection with the design and development of various energy and chemical-technological devices as well as both study of flow around bodies and solving problems of environmental hydrodynamics, etc. An interesting example of such a flow is a swirling turbulent wake behind bodies of revolution. Analysis of the known works on the numerical simulation of swirling turbulent wakes behind bodies of revolution indicates lack of knowledge on the dynamics of the momentumless swirling turbulent wake. A special case of the motion of a body with a propulsor whose thrust compensates the swirl is studied, but there is a nonzero integral swirl in the flow. In previous works with the participation of the authors, a numerical simulation of the initial stage of the evolution of a swirling momentumless turbulent wake based on a hierarchy of second-order mathematical models was performed. It is shown that a satisfactory agreement of the results of calculations with the available experimental data is possible only with the use of a mathematical model that includes the averaged equations of motion and differential equations for the transfer of normal Reynolds stresses along the rate of dissipation. In the present work, based on the above mentioned mathematical model, a numerical simulation of the evolution of a far momentumless swirling turbulent wake with a nonzero angular momentum behind the body of revolution is performed. It is shown that starting from distances of the order of 1000 diameters from the body the flow becomes self-similar. Based on the analysis of the results of numerical experiments, simplified mathematical models of the far wake are constructed. The authors dedicate this work to the blessed memory of Vladimir Alekseevich Kostomakha.


1989 ◽  
Vol 04 (07) ◽  
pp. 633-644 ◽  
Author(s):  
I. L. BUCHBINDER ◽  
E. N. KIRILLOVA ◽  
S. D. ODINTSOV

The one-loop Vilkovisky effective potential which is not dependent on a gauge and a parametrization of quantum field, is investigated. We have considered Einstein gravity on a background manifold of (flat space) × (d−4- sphere) or × (d−4- dimensional torus ), d is even, and of R3 × (1- sphere ), where R3 is flat space. The numerical calculation for the cases R4 × Td−4 (d = 6,8,10) and R3 × S1 is done. The solution to the one-loop corrected equations of motion is found, although the spontaneous compactification is not stable in these cases.


2019 ◽  
Vol 15 (03) ◽  
pp. 445-468 ◽  
Author(s):  
Antonin Riffaut

We treat two different equations involving powers of singular moduli. On the one hand, we show that, with two possible (explicitly specified) exceptions, two distinct singular moduli [Formula: see text] such that the numbers [Formula: see text], [Formula: see text] and [Formula: see text] are linearly dependent over [Formula: see text] for some positive integers [Formula: see text], must be of degree at most [Formula: see text]. This partially generalizes a result of Allombert, Bilu and Pizarro-Madariaga, who studied CM-points belonging to straight lines in [Formula: see text] defined over [Formula: see text]. On the other hand, we show that, with obvious exceptions, the product of any two powers of singular moduli cannot be a non-zero rational number. This generalizes a result of Bilu, Luca and Pizarro-Madariaga, who studied CM-points belonging to a hyperbola [Formula: see text], where [Formula: see text].


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2199
Author(s):  
Markus Scholle

Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other.


1997 ◽  
Vol 3 (3) ◽  
pp. 255-265
Author(s):  
Eugen Dyban ◽  
Ella Fridman

In order to analyze the relaxation effects in a turbulent boundary layer with zero and nonzero free stream turbulence, the Reynolds-averaged equations of motion and energy are solved. As the closure of the Reynolds-averaged equations, the transport equation for turbulent shear stresses is used. The proposed approach leads to calculation of the relaxation scales in the turbulent boundary layer with zero and nonzero free stream turbulence. Results for friction coefficients, velocity profiles, shear stresses, thickness of the boundary layer and so called “superlayer” in a flat-plate turbulent boundary layer are presented. The results obtained are in agreement with those available from the experimental data.


2011 ◽  
Vol 26 (35) ◽  
pp. 2627-2638 ◽  
Author(s):  
SUVRAT RAJU ◽  
C. K. RAJU

We propose a general technique to solve the classical many-body problem with radiative damping. We modify the short-distance structure of Maxwell electrodynamics. This allows us to avoid runaway solutions as if we had a covariant model of extended particles. The resulting equations of motion are functional differential equations (FDEs) rather than ordinary differential equations (ODEs). Using recently developed numerical techniques for stiff, retarded FDEs, we solve these equations for the one-body central force problem with radiative damping. Our results indicate that locally the magnitude of radiation damping may be well approximated by the standard third-order expression but the global properties of our solutions are dramatically different. We comment on the two-body problem and applications to quantum field theory and quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document