scholarly journals Developing Science Education and Outreach Partnerships at Research Institutions

1998 ◽  
Vol 162 ◽  
pp. 230-234
Author(s):  
K. L. Dow

Like many research institutions, the Harvard-Smithsonian Center for Astrophysicsf (CfA), has been actively engaged in education and public outreach activities for many years. The Harvard University Department of Astronomy, the formal higher education arm of the CfA, offers an undergraduate concentration and a doctoral program. In our Science Education Department, educational researchers manage ten programs that address the needs of teachers and students (K-12 and college), through advanced technology, teacher enhancement programs, and the development of curriculum materials. The Editorial and Public Affairs Department offers several public lecture series, recorded sky information, children's nights, and runs the Whipple Observatory Visitors Center in Amado, AZ. In this environment of successful programs, the High Energy Astrophysics (HEA) division, one of seven research divisions at the CfA, has initiated, or partnered with other institutions, development of several new education and outreach programs. Some of these programs involve partnerships with the education community, but all of them have been initiated by and involve scientists.

Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1601-1609
Author(s):  
Erin L Dolan ◽  
Barbara E Soots ◽  
Peggy G Lemaux ◽  
Seung Y Rhee ◽  
Leonore Reiser

Abstract The National Science Foundation’s recent mandate that all Principal Investigators address the broader impacts of their research has prompted an unprecedented number of scientists to seek opportunities to participate in precollege education and outreach. To help interested geneticists avoid duplicating efforts and make use of existing resources, we examined several precollege genetics, genomics, and biotechnology education efforts and noted the elements that contributed to their success, indicated by program expansion, participant satisfaction, or participant learning. Identifying a specific audience and their needs and resources, involving K–12 teachers in program development, and evaluating program efforts are integral to program success. We highlighted a few innovative programs to illustrate these findings. Challenges that may compromise further development and dissemination of these programs include absence of reward systems for participation in outreach as well as lack of training for scientists doing outreach. Several programs and institutions are tackling these issues in ways that will help sustain outreach efforts while allowing them to be modified to meet the changing needs of their participants, including scientists, teachers, and students. Most importantly, resources and personnel are available to facilitate greater and deeper involvement of scientists in precollege and public education.


Author(s):  
C.H. Wang ◽  
S.P. Chang ◽  
C.F. Chang ◽  
J.Y. Chiou

Abstract Focused ion beam (FIB) is a popular tool for physical failure analysis (FA), especially for circuit repair. FIB is especially useful on advanced technology where the FIB is used to modify the circuit for new layout verification or electrical measurement. The samples are prepared till inter-metal dielectric (IMD), then a hole is dug or a metal is deposited or oxide is deposited by FIB. A common assumption is made that metal under oxide can not be seen by FIB. But a metal ion image is desired for further action. Dual beam, FIB and Scanning Electron Microscope (SEM), tools have a special advantage. When switching back and forth from SEM to FIB the observation has been made that the metal lines can be imaged. The details of this technique will be discussed below.


Author(s):  
Senay Purzer ◽  
Jenny Patricia Quintana-Cifuentes

AbstractThis position paper is motivated by recent educational reform efforts that urge the integration of engineering in science education. We argue that it is plausible and beneficial to integrate engineering into formal K-12 science education. We illustrate how current literature, though often implicitly, discusses this integration from a pedagogical, epistemological, or methodological argumentative stance. From a pedagogical perspective, a historically dominant argument emphasizes how engineering helps make abstract science concepts more concrete. The epistemological argument is centered on how engineering is inherently interdisciplinary and hence its integrative role in support of scientific literacy and more broadly STEM literacy is natural. From a methodological perspective, arguments focus on the engineering design process, which is compatible with scientific inquiry and adaptable to answering different types of engineering questions. We call for the necessity of spelling out these arguments and call for common language as science and engineering educators form a research-base on the integration of science and engineering. We specifically provide and discuss specific terminology associated with four different models, each effectively used to integrate engineering into school science. We caution educators against a possible direction towards a convergence approach for a specific type of integrating engineering and science. Diversity in teaching models, more accurately represents the nature of engineering but also allows adaptations based on available school resources. Future synthesis can then examine student learning outcomes associated with different teaching models.


1983 ◽  
Vol 37 ◽  
pp. 13-13
Author(s):  
Avery Leiserson

This essay addresses the problem of teachers and students who have reached the point of trying to find a common ground for perceiving (seeing) politics. This may occur almost any time during any social science course, but it cannot be assumed to happen automatically the first day of class in government, citizenship, or public affairs. Hopefully, the signal is some variant of the question: “What do we mean by politics, or the political aspect of human affairs?” A parade of definitions — taking controversial positions on public policy issues; running for elective office; who gets what, when and how; and manipulating people—is not a mutually-satisfying answer if it produces the Queen of Hearts’ attitude in students that the word politics means what they choose it to mean and nothing more.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-31
Author(s):  
Joslenne Peña ◽  
Benjamin V. Hanrahan ◽  
Mary Beth Rosson ◽  
Carmen Cole

Many initiatives have focused on attracting girls and young women (K-12 or college) to computer science education. However, professional women who never learned to program have been largely ignored, despite the fact that such individuals may have many opportunities to benefit from enhanced skills and attitudes about computer programming. To provide a convenient learning space for this population, we created and evaluated the impacts of a nine-week web development workshop that was carefully designed to be both comfortable and engaging for this population. In this article, we report how the professionals’ attitudes and skills grew over the course of the workshop and how they now expect to integrate these skills and attitudes into their everyday lives.


Author(s):  
Michael Lodi ◽  
Simone Martini

AbstractThe pervasiveness of Computer Science (CS) in today’s digital society and the extensive use of computational methods in other sciences call for its introduction in the school curriculum. Hence, Computer Science Education is becoming more and more relevant. In CS K-12 education, computational thinking (CT) is one of the abused buzzwords: different stakeholders (media, educators, politicians) give it different meanings, some more oriented to CS, others more linked to its interdisciplinary value. The expression was introduced by two leading researchers, Jeannette Wing (in 2006) and Seymour Papert (much early, in 1980), each of them stressing different aspects of a common theme. This paper will use a historical approach to review, discuss, and put in context these first two educational and epistemological approaches to CT. We will relate them to today’s context and evaluate what aspects are still relevant for CS K-12 education. Of the two, particular interest is devoted to “Papert’s CT,” which is the lesser-known and the lesser-studied. We will conclude that “Wing’s CT” and “Papert’s CT,” when correctly understood, are both relevant to today’s computer science education. From Wing, we should retain computer science’s centrality, CT being the (scientific and cultural) substratum of the technical competencies. Under this interpretation, CT is a lens and a set of categories for understanding the algorithmic fabric of today’s world. From Papert, we should retain the constructionist idea that only a social and affective involvement of students into the technical content will make programming an interdisciplinary tool for learning (also) other disciplines. We will also discuss the often quoted (and often unverified) claim that CT automatically “transfers” to other broad 21st century skills. Our analysis will be relevant for educators and scholars to recognize and avoid misconceptions and build on the two core roots of CT.


Sign in / Sign up

Export Citation Format

Share Document