scholarly journals Dynamic and Probabilistic Relation between Meteoroids and their Parent Bodies

1996 ◽  
Vol 150 ◽  
pp. 133-136
Author(s):  
Lars G. Adolfsson ◽  
Bo Å. S. Gustafson

AbstractWe estimate the probability that specific meteoroids were produced by a specific parent body and obtain the ejection velocity and several other conditions of the ejection as a by-product. The duration of cometary activity leading to a meteor stream, or the epoch of a collision can be estimated from the ejection times of meteoroids in the same stream. The level of activity of a comet or probability of asteroid collisions can be estimated from the part of the orbit where ejection took place. We show that Phaethon ejected Geminid meteoroids over at least 3000 years lasting to as recently as ≈ AD 1600. Ejections are predominantly in the direction of the sun, i.e., from Phaethon's day side, and give insights into the ejection process which is suggestive of cometary activity. Our calculations account for the uncertainty in the observational data and include the effects of planetary perturbations, radiation pressure, Poynting-Robertson light drag and solar wind corpuscular drag.

2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


2018 ◽  
Vol 617 ◽  
pp. A43 ◽  
Author(s):  
A. Czechowski ◽  
I. Mann

Context. Because of high charge-to-mass ratio, the nanodust dynamics near the Sun is determined by interplay between the gravity and the electromagnetic forces. Depending on the point where it was created, a nanodust particle can either be trapped in a non-Keplerian orbit, or escape away from the Sun, reaching large velocity. The main source of nanodust is collisional fragmentation of larger dust grains, moving in approximately circular orbits inside the circumsolar dust cloud. Nanodust can also be released from cometary bodies, with highly elongated orbits. Aims. We use numerical simulations and theoretical models to study the dynamics of nanodust particles released from the parent bodies moving in elongated orbits around the Sun. We attempt to find out whether these particles can contribute to the trapped nanodust population. Methods. We use two methods: the motion of nanodust is described either by numerical solutions of full equations of motion, or by a two-dimensional (heliocentric distance vs. radial velocity) model based on the guiding-center approximation. Three models of the solar wind are employed, with different velocity profiles. Poynting–Robertson and the ion drag are included. Results. We find that the nanodust emitted from highly eccentric orbits with large aphelium distance, like those of sungrazing comets, is unlikely to be trapped. Some nanodust particles emitted from the inbound branch of such orbits can approach the Sun to within much shorter distances than the perihelium of the parent body. Unless destroyed by sublimation or other processes, these particles ultimately escape away from the Sun. Nanodust from highly eccentric orbits can be trapped if the orbits are contained within the boundary of the trapping region (for orbits close to ecliptic plane, within ~0.16 AU from the Sun). Particles that avoid trapping escape to large distances, gaining velocities comparable to that of the solar wind.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


2017 ◽  
Vol 35 (6) ◽  
pp. 1275-1291 ◽  
Author(s):  
Allan R. Macneil ◽  
Christopher J. Owen ◽  
Robert T. Wicks

Abstract. The development of knowledge of how the coronal origin of the solar wind affects its in situ properties is one of the keys to understanding the relationship between the Sun and the heliosphere. In this paper, we analyse ACE/SWICS and WIND/3DP data spanning  > 12 years, and test properties of solar wind suprathermal electron distributions for the presence of signatures of the coronal temperature at their origin which may remain at 1 AU. In particular we re-examine a previous suggestion that these properties correlate with the oxygen charge state ratio O7+ ∕ O6+, an established proxy for coronal electron temperature. We find only a very weak but variable correlation between measures of suprathermal electron energy content and O7+ ∕ O6+. The weak nature of the correlation leads us to conclude, in contrast to earlier results, that an initial relationship with core electron temperature has the possibility to exist in the corona, but that in most cases no strong signatures remain in the suprathermal electron distributions at 1 AU. It cannot yet be confirmed whether this is due to the effects of coronal conditions on the establishment of this relationship or due to the altering of the electron distributions by processing during transport in the solar wind en route to 1 AU. Contrasting results for the halo and strahl population favours the latter interpretation. Confirmation of this will be possible using Solar Orbiter data (cruise and nominal mission phase) to test whether the weakness of the relationship persists over a range of heliocentric distances. If the correlation is found to strengthen when closer to the Sun, then this would indicate an initial relationship which is being degraded, perhaps by wave–particle interactions, en route to the observer.


2019 ◽  
Vol 630 ◽  
pp. A42 ◽  
Author(s):  
M. Myllys ◽  
P. Henri ◽  
M. Galand ◽  
K. L. Heritier ◽  
N. Gilet ◽  
...  

Context. The Rosetta spacecraft escorted comet 67P/Churyumov-Gerasimenko from 2014 to September 2016. The mission provided in situ observations of the cometary plasma during different phases of the cometary activity, which enabled us to better understand its evolution as a function of heliocentric distance. Aims. In this study, different electron populations, called warm and hot, observed by the Ion and Electron Sensor (IES) of the Rosetta Plasma Consortium (RPC) are investigated near the comet during the escorting phase of the Rosetta mission. Methods. The estimates for the suprathermal electron densities and temperatures were extracted using IES electron data by fitting a double-kappa function to the measured velocity distributions. The fitting results were validated using observations from other RPC instruments. We give upgraded estimates for the warm and hot population densities compared to values previously shown in literature. Results. The fitted density and temperature estimates for both electron populations seen by IES are expressed as a function of heliocentric distance to study their evolution with the cometary activity. In addition, we studied the dependence between the electron properties and cometocentric distance. Conclusions. We observed that when the neutral outgassing rate of the nucleus is high (i.e., near perihelion) the suprathermal electrons are well characterized by a double-kappa distribution. In addition, warm and hot populations show a significant dependence with the heliocentric distance. The populations become clearly denser near perihelion while their temperatures are observed to remain almost constant. Moreover, the warm electron population density is shown to be strongly dependent on the radial distance from the comet. Finally, based on our results we reject the hypothesis that hot electron population seen by IES consists of solely suprathermal (halo) solar wind electrons, while we suggest that the hot electron population mainly consists of solar wind thermal electrons that have undergone acceleration near the comet.


Sign in / Sign up

Export Citation Format

Share Document