scholarly journals Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta

2019 ◽  
Vol 630 ◽  
pp. A42 ◽  
Author(s):  
M. Myllys ◽  
P. Henri ◽  
M. Galand ◽  
K. L. Heritier ◽  
N. Gilet ◽  
...  

Context. The Rosetta spacecraft escorted comet 67P/Churyumov-Gerasimenko from 2014 to September 2016. The mission provided in situ observations of the cometary plasma during different phases of the cometary activity, which enabled us to better understand its evolution as a function of heliocentric distance. Aims. In this study, different electron populations, called warm and hot, observed by the Ion and Electron Sensor (IES) of the Rosetta Plasma Consortium (RPC) are investigated near the comet during the escorting phase of the Rosetta mission. Methods. The estimates for the suprathermal electron densities and temperatures were extracted using IES electron data by fitting a double-kappa function to the measured velocity distributions. The fitting results were validated using observations from other RPC instruments. We give upgraded estimates for the warm and hot population densities compared to values previously shown in literature. Results. The fitted density and temperature estimates for both electron populations seen by IES are expressed as a function of heliocentric distance to study their evolution with the cometary activity. In addition, we studied the dependence between the electron properties and cometocentric distance. Conclusions. We observed that when the neutral outgassing rate of the nucleus is high (i.e., near perihelion) the suprathermal electrons are well characterized by a double-kappa distribution. In addition, warm and hot populations show a significant dependence with the heliocentric distance. The populations become clearly denser near perihelion while their temperatures are observed to remain almost constant. Moreover, the warm electron population density is shown to be strongly dependent on the radial distance from the comet. Finally, based on our results we reject the hypothesis that hot electron population seen by IES consists of solely suprathermal (halo) solar wind electrons, while we suggest that the hot electron population mainly consists of solar wind thermal electrons that have undergone acceleration near the comet.

2020 ◽  
Author(s):  
Katharina Ostaszewski ◽  
Karl-Heinz Glassmeier ◽  
Charlotte Goetz ◽  
Philip Heinisch ◽  
Pierre Henri ◽  
...  

Abstract. We present a statistical survey of large amplitude, asymmetric plasma, and magnetic field enhancements at comet 67P/Churyumov-Gerasimenko from December 2014 to June 2016. The aim is to provide a general overview of these structures' properties over the mission duration. At comets, nonlinear wave evolution plays an integral part in the development of turbulence and in particular facilitates the transfer of energy and momentum. As the first mission of its kind, the ESA Rosetta mission was able to study the plasma properties of the inner coma for a prolonged time and during different stages of activity. This enables us to study the temporal evolution of steepened waves and their characteristics. In total, we identified ~70000 events in the magnetic field data by means of machine learning. We observe that the occurrence of wave events is linked to the activity of the comet, where events are primarily observed at high outgassing rates. No clear indications of a relationship between the occurrence rate and solar wind conditions were found. The waves are found to propagate predominantly perpendicular to the background magnetic field, which indicates their compressive nature. Characteristics like amplitude, skewness, and width of the waves were extracted by fitting a skew normal distribution to the magnetic field magnitude of individual events. With increasing massloading the average amplitude of steepened waves decreases while the skewness increases. Using a modified 1D MHD model it was possible to show that such solitary structures can be described by the combination of nonlinear, dispersive, and dissipative effects. By combining the model with observations of amplitude, width, and skewness we obtain an estimate of the effective plasma viscosity in the comet-solar wind interaction region. At 67P/Churyumov-Gerasimenko steepened waves are of particular importance as they dominate the innermost interaction region for intermediate to high activity.


2018 ◽  
Vol 616 ◽  
pp. A81 ◽  
Author(s):  
J. Lindkvist ◽  
M. Hamrin ◽  
H. Gunell ◽  
H. Nilsson ◽  
C. S. Wedlund ◽  
...  

Aims. We wish to investigate the energy conversion between particles and electromagnetic fields and determine the location where it occurs in the plasma environment of comets. Methods. We used a hybrid plasma model that included photoionization, and we considered two cases of the solar extreme ultraviolet flux. Other parameters corresponded to the conditions of comet 67P/Churyumov–Gerasimenko at a heliocentric distance of 1.5 AU. Results. We find that a shock-like structure is formed upstream of the comet and acts as an electromagnetic generator, similar to the bow shock at Earth that slows down the solar wind. The Poynting flux transports electromagnetic energy toward the inner coma, where newly born cometary ions are accelerated. Upstream of the shock-like structure, we find local energy transfer from solar wind ions to cometary ions. We show that mass loading can be a local process with a direct transfer of energy, but also part of a dynamo system with electromagnetic generators and loads. Conclusions. The energization of cometary ions is governed by a dynamo system for weak ionization, but changes into a large conversion region with local transfer of energy directly from solar wind protons for high ionization.


1988 ◽  
Vol 6 (2) ◽  
pp. 287-294
Author(s):  
T. J. M. Boyd ◽  
G. A. Gardner ◽  
G. A. Coutts

Many experiments show features of the Raman spectrum at variance with the predictions of conventional theory. One persistent discrepancy, the cut-off in the spectrum of scattered light at about 1·5λ0, led Simon and Short to postulate that the scattered spectrum is not Raman light as such, but derives from enhanced Thomson scattering from plasmas in which a population of suprathermal electrons is present. We describe a set of simulations which model the propagation of a light wave through a plasma characterized by two electron temperatures with the hot electron fraction varying between 0 and 0·05. The results show that enhanced Thomson scattering will contribute to the spectra observed in some experiments at least and confirm the contention that the spectrum of the scattered light is not especially sensitive to the width of the suprathermal electron feature. We have also examined the effect of a finite quiver velocity on the enhanced Thomson spectrum as a function of the population of suprathermal electrons, in particular its effect on the wavelength bands.


2021 ◽  
Vol 923 (2) ◽  
pp. 170
Author(s):  
Tereza Ďurovcová ◽  
Jana Šafránková ◽  
Zdeněk Němeček

Abstract Less abundant but still dynamically important solar wind components are the proton beam and alpha particles, which usually contribute similarly to the total ion momentum. The main characteristics of alpha particles are determined by the solar wind source region, but the origin of the proton beam and its properties are still not fully explained. We use the plasma data measured in situ on the path from 0.3 to 1 au (Helios 1 and 2) and focus on the proton beam development with an increasing radial distance as well as on the connection between the proton beam and alpha particle properties. We found that the proton beam relative abundance increases with increasing distance from the Sun in the collisionally young streams. Among the mechanisms suggested for beam creation, we have identified the wave–particle interactions with obliquely propagating Alfvén modes being consistent with observations. As the solar wind streams get collisionally older, the proton beam decay gradually dominates and the beam abundance is reduced. In search for responsible mechanisms, we found that the content of alpha particles is correlated with the proton beam abundance, and this effect is more pronounced in the fast solar wind streams during the solar maximum. We suggest that Coulomb collisions are the main agent leading to merging of the proton beam and core. We are also showing that the variations of the proton beam abundance are correlated with a decrease of the alpha particle velocity in order to maintain the total momentum balance in the solar wind frame.


2000 ◽  
Vol 7 (3/4) ◽  
pp. 191-200 ◽  
Author(s):  
K. Sperveslage ◽  
F. M. Neubauer ◽  
K. Baumgärtel ◽  
N. F. Ness

Abstract. Magnetic holes (MHs) are depressions of the magnetic field magnitude. Turner et al. (1977) identified the first MHs in the solar wind and determined an occurrence rate of 1.5 MHs/d. Winterhalter et al. (1994) developed an automatic identification criterion to search for MHs in Ulysses data in the solar wind between 1 AU and 5.4 AU. We adopt their criterion to expand the search to the heliocentric distances down to 0.3 AU using data from Helios 1 and 2 and up to 17 AU using data from Voyager 2. We relate our observations to two theoretical approaches which describe the so-called linear MHs in which the magnetic vector varies in magnitude rather than direction. Therefore we focus on such linear MHs with a directional change less than 10º. With our observations of about 850 MHs we present the following results: Approximately 30% of all the identified MHs are linear. The maximum angle between the initial magnetic field vector and any vector inside the MH is 20º in average and shows a weak relation to the depth of the MHs. The angle between the initial magnetic field and the minimum variance direction of those structures is large and very probably close to 90º. The MHs are placed in a high β environment even though the average solar wind shows a smaller β. The widths decrease from about 50 proton inertial length in a region between 0.3 AU and 0.4 AU heliocentric distance to about 15 proton inertial length at distances larger than 10 AU. This quantity is correlated with the β of the MH environments with respect to the heliocentric distance. There is a clear preference for the occurrence of depressions instead of compressions. We discuss these results with regard to the main theories of MHs, the mirror instability and the alternative soliton approach. Although our observational results are more consistent with the soliton theory we favour a combination of both. MHs might be the remnants of initial mirror mode structures which can be described as solitons during the main part of their lifetime.


2021 ◽  
Vol 923 (1) ◽  
pp. 116
Author(s):  
Mihailo M. Martinović ◽  
Kristopher G. Klein ◽  
Tereza Ďurovcová ◽  
Benjamin L. Alterman

Abstract Instabilities described by linear theory characterize an important form of wave–particle interaction in the solar wind. We diagnose unstable behavior of solar wind plasma between 0.3 and 1 au via the Nyquist criterion, applying it to fits of ∼1.5M proton and α particle Velocity Distribution Functions (VDFs) observed by Helios I and II. The variation of the fraction of unstable intervals with radial distance from the Sun is linear, signaling a gradual decline in the activity of unstable modes. When calculated as functions of the solar wind velocity and Coulomb number, we obtain more extreme, exponential trends in the regions where collisions appear to have a notable influence on the VDF. Instability growth rates demonstrate similar behavior, and significantly decrease with Coulomb number. We find that for a nonnegligible fraction of observations, the proton beam or secondary component might not be detected, due to instrument resolution limitations, and demonstrate that the impact of this issue does not affect the main conclusions of this work.


2021 ◽  
Author(s):  
Hayley Williamson ◽  
Hans Nilsson ◽  
Anja Moslinger ◽  
Sofia Bergman ◽  
Gabriella Stenberg-Wieser

<p>Defined as the region where the plasma interaction region of a comet goes from being solar wind-dominated to cometary ion-dominated, the cometopause is a region of comingling plasmas and complex dynamics. The Rosetta mission orbited comet 67P/Churyumov-Gerasimenko for roughly two years. During this time, the cometopause was observed by the Ion Composition Analyzer (ICA), part of the Rosetta Plasma Consortium (RPC), before and after the spacecraft was in the solar wind ion cavity, defined as the region where no solar wind ions were measured. Data from ICA shows that solar wind and cometary ions have similar momentum and energy flux moments during this transitional period, indicating mass loading and deflection of the solar wind. We examine higher order moments and distribution functions for the solar wind and cometary species between December 2015 and March 2016. The behavior of the solar wind protons indicates that in many cases these protons are deflected in a sunward direction, while the cometary ions continue to move predominately antisunward. By studying the distribution functions of the protons during these time periods, it is possible to see a non-Maxwellian energy distribution. This can inform on the nature of the cometopause boundary and the energy transfer mechanisms at play in this region.</p>


2021 ◽  
Author(s):  
Fran Bagenal ◽  
Ezra Huscher ◽  
Robert Wilson ◽  
Frederic Allegrini ◽  
Robert Ebert

<p>Using 30 inbound passes through the Jovian system, we combine measurements from the fields and particles instruments on the Juno spacecraft to survey the properties of Jupiter's plasma disk. Juno's orbit is particularly useful for exploring the variation in plasma conditions with latitude as well as radial distance (from ~10 to ~50 RJ). We present basic plasma properties (composition, density, temperature, velocity, magnetic field strength) to make maps of the plasma environment. Also show that on some of the 53-day orbits the plasma sheet has regular structure (density having roughly Gaussian distribution with latitude and decreasing with distance) but there are also highly irregular orbits with low or erratic density distributions.</p>


2020 ◽  
Vol 498 (1) ◽  
pp. 1221-1238
Author(s):  
Hong Van Hoang ◽  
S Fornasier ◽  
E Quirico ◽  
P H Hasselmann ◽  
M A Barucci ◽  
...  

ABSTRACT We investigate Abydos, the final landing site of the Philae lander after its eventful landing from the Rosetta spacecraft on comet 67P/Churyumov–Gerasimenko on 2014 November 12. Over 1000 OSIRIS-level 3B images were analysed, which cover the 2014 August–2016 September timeframe, with spatial resolution ranging from 7.6 m pixel−1 to approximately 0.06 m pixel−1. We found that the Abydos site is as dark as the global 67P nucleus and spectrally red, with an average albedo of 6.5 per cent at 649 nm and a spectral slope value of about 17 per cent/(100 nm) at 50° phase angle. Similar to the whole nucleus, the Abydos site also shows phase reddening but with lower coefficients than other regions of the comet, which may imply a thinner cover of microscopically rough regolith compared to other areas. Seasonal variations, as already noticed for the whole nucleus, were also observed. We identified some potential morphological changes near the landing site implying a total mass-loss of (4.7–7.0) × 105 kg. Small spots ranging from 0.1 to 27 m2 were observed close to Abydos before and after perihelion. Their estimated water ice abundance reaches 30–40 per cent locally, indicating fresh exposures of volatiles. Their lifetime ranges from a few hours up to three months for two pre-perihelion spots. The Abydos surroundings showed a low level of cometary activity compared to other regions of the nucleus. Only a few jets are reported originating nearby Abydos, including a bright outburst that lasted for about 1 h.


2020 ◽  
Vol 494 (3) ◽  
pp. 3642-3655 ◽  
Author(s):  
Allan R Macneil ◽  
Mathew J Owens ◽  
Robert T Wicks ◽  
Mike Lockwood ◽  
Sarah N Bentley ◽  
...  

ABSTRACT Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood. Parker Solar Probe has recently observed rapid, Alfvénic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 au, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3 and 1 au being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend.


Sign in / Sign up

Export Citation Format

Share Document