scholarly journals A fragmentation model of dust grains in the inner coma of Halley. A possible explanation of the color effect

1996 ◽  
Vol 150 ◽  
pp. 387-390
Author(s):  
B. Goidet-Devel ◽  
J. Clairemidi ◽  
G. Moreels ◽  
P. Rousselot

AbstractA model to describe the intensity of dust scattered light observed by the spectrometer TKS during the Vega/Halley encounter is presented. Good agreement is obtained when using a particle radius dependent mass density. The color effect is reproduced if the refractive index of tholin is adopted.

2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


1989 ◽  
Vol 172 ◽  
Author(s):  
T. S. Aurora ◽  
D. O. Pederson ◽  
S. M. Day

AbstractLinear thermal expansion and refractive index variation have been measured in lead fluoride with a laser interferometer as a function of temperature. Data has been analyzed using the Lorentz-Lorenz relation. Molecular polarizability, band gap, variation of refractive index with density, and strain-polarizability parameter have been studied as a function of temperature. They exhibit a small variation with temperature except near the superionic phase transition where the variation appears to be more pronounced. The results are in good agreement with the published data near room temperature.


2018 ◽  
Author(s):  
Uwe Berger ◽  
Gerd Baumgarten ◽  
Jens Fiedler ◽  
Franz-Josef Lübken

Abstract. In this paper we present a new description about statistical probability density distributions (pdfs) of Polar Mesospheric Clouds (PMC) and noctilucent clouds (NLC). The analysis is based on observations of maximum backscatter, ice mass density, ice particle radius, and number density of ice particles measured by the ALOMAR RMR-lidar for all NLC seasons from 2002 to 2016. From this data set we derive a new class of pdfs that describe the statistics of PMC/NLC events which is different from previously statistical methods using the approach of an exponential distribution commonly named g-distribution. The new analysis describes successfully the probability statistic of ALOMAR lidar data. It turns out that the former g-function description is a special case of our new approach. In general the new statistical function can be applied to many kinds of different PMC parameters, e.g. maximum backscatter, integrated backscatter, ice mass density, ice water content, ice particle radius, ice particle number density or albedo measured by satellites. As a main advantage the new method allows to connect different observational PMC distributions of lidar, and satellite data, and also to compare with distributions from ice model studies. In particular, the statistical distributions of different ice parameters can be compared with each other on the basis of a common assessment that facilitate, for example, trend analysis of PMC/NLC.


2015 ◽  
Vol 8 (6) ◽  
pp. 2625-2638 ◽  
Author(s):  
L. Wu ◽  
O. Hasekamp ◽  
B. van Diedenhoven ◽  
B. Cairns

Abstract. We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.


We present a classical many-body theory of the optical response of a molecular fluid. The unified treatment provides mutually consistent expressions for the dielectric constant, the refractive index, the optical extinction coefficient, and the optical scattering cross section. The theory treats a finite material system and handles all surface effects associated with transmitted and scattered light. The complex refractive index and the scattering cross section will be analysed in two future papers.


2015 ◽  
Vol 23 (15) ◽  
pp. 19512 ◽  
Author(s):  
Kelly C. Jorge ◽  
Hans A. García ◽  
Anderson M. Amaral ◽  
Albert S. Reyna ◽  
Leonardo de S. Menezes ◽  
...  

1975 ◽  
Vol 30 (3) ◽  
pp. 287-291 ◽  
Author(s):  
I. Gryczyński ◽  
A. Kawski

A variation of the temperature changes the static dielectric constant (ε) and the refractive index (n) of solvents and, in conjunction with the measurement of solvent shifts of absorption and fluorescence maxima, allows the investigation of dipole moment changes of solutes in the excited state. For this purpose, investigations of the temperature dependences of ε and n of some pure and mixed solvents of different polarities have been made. It is found that the excited dipole moments of indole, 1,2-dimethylindole, 2,3-dimethylindole and tryptophan obtained from the shifts of the fluorescence maxima in mixed solvents at high temperatures are in good agreement with those obtained in other ways.


2018 ◽  
Vol 52 (30) ◽  
pp. 4231-4246 ◽  
Author(s):  
Wolfgang Wildner ◽  
Dietmar Drummer

If fillers can be added to transparent materials without losing transparency, then advantages like enhanced mechanical and thermal properties can be integrated. The investigated specimens consist of glass particles and refractive index oil as a model for transparent matrices with a very similar refractive index. Their optical properties and resulting limitations are described. Potential uses are also demonstrated by application-oriented optical testing. Besides a standard spectrometer, additional spectrometer setups were used. These include a diffuse as well as a collimated illumination and different sample positioning. Furthermore, the scattered light intensity was measured at different angles. This analysis reveals that composites with smaller particles transmit more light directly. In contrast, standard spectrometers indicate an increasing direct transmittance of composites with larger particles. They collect significant amounts of scattered light and, therefore, are not suitable for transmission measurements of such composites. The different positioning shows that all specimens exhibit very little scattering when placed directly on a diffuse light source. With a greater distance between specimen and light source, the scattering increases strongly. To display the composites' optical appearance, the light-dark-contrast of the diffuse white light source photographed behind the composite was analyzed. Both long and short distances between composite and light source lead to a precise image of the light source. Nevertheless, the white light source appears in the color of the wavelength with matching refractive indices at long distances.


1973 ◽  
Vol 52 ◽  
pp. 187-189
Author(s):  
P. Cugnon

This paper is devoted to a comparison between results obtained by Purcell and Spitzer (1971) using a Monte-Carlo method and by the author (1971) using a Fokker-Planck equation. It is shown that there is a good agreement between the results within the dispersion expected from the Monte-Carlo method.


2015 ◽  
Vol 8 (3) ◽  
pp. 2793-2822
Author(s):  
L. Wu ◽  
O. Hasekamp ◽  
B. van Diedenhoven ◽  
B. Cairns

Abstract. We investigated the importance of spectral range and angular resolution for aerosol retrieval from multi-angle photo-polarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over continental US. Aerosol retrievals performed from RSP measurements show good agreement with ground based AERONET measurements for AOT, SSA, and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOT, SSA and coarse mode microphysical properties. On the other hand, retrieval accuracies on aerosol properties do not improve significantly if more than 10 viewing angles are used in the retrieval.


Sign in / Sign up

Export Citation Format

Share Document