Analysis of Thermal Variation of Length and Refractive Index of Lead Fluoride to Study its Optical Properties

1989 ◽  
Vol 172 ◽  
Author(s):  
T. S. Aurora ◽  
D. O. Pederson ◽  
S. M. Day

AbstractLinear thermal expansion and refractive index variation have been measured in lead fluoride with a laser interferometer as a function of temperature. Data has been analyzed using the Lorentz-Lorenz relation. Molecular polarizability, band gap, variation of refractive index with density, and strain-polarizability parameter have been studied as a function of temperature. They exhibit a small variation with temperature except near the superionic phase transition where the variation appears to be more pronounced. The results are in good agreement with the published data near room temperature.

2019 ◽  
Vol 52 (3) ◽  
pp. 564-570 ◽  
Author(s):  
Rolf Hesterberg ◽  
Michel Bonin ◽  
Martin Sommer ◽  
Matthias Burgener ◽  
Bernhard Trusch ◽  
...  

The growth speed of (hkl) faces in the vapour phase, the absolute structure obtained by X-ray crystallography, and the value and the sign of the pyroelectric coefficient of meta-nitroaniline (mNA) were analysed in detail. The in situ observation of morphologically well developed faces of several mNA crystals growing in evacuated ampoules reveals no pronounced growth speed anisotropy for polar faces defining the unique axis 2 of the mm2 group. Scanning pyroelectric microscopy confirms mono-domain mNA crystals. X-ray measurements in the space group Pca21 show that the molecular planes coincide with the {\bar 211} and {\bar 2\bar 1\bar 1} faces, and the nitro groups cover the {201} face in the opposite direction to the crystal tip, characterizing the polar habitus studied here. At room temperature, the sign of the pyroelectric coefficient is positive for a measured effective value of 6.3 µC m−2 K−1, in good agreement with values reported by other authors. From previous elastic and piezoelectric published data, the secondary pyroelectric effect was calculated to be positive and far greater than the effective one, yielding a negative value for the primary pyroelectric coefficient.


Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


1988 ◽  
Vol 126 ◽  
Author(s):  
S.-Tong Lee ◽  
G. Braunstein ◽  
Samuel Chen

ABSTRACTThe defect and atomic profiles for MeV implantation of Si in GaAs were investigated using He++ channeling, TEM, and SIMS. Doses of 1–10 × 1015Si/cm2 at 1–3 MeV were used. MeV implantation at room temperature rendered only a small amount of lattice disorder in GaAs. Upon annealing at 400°C for 1 h or 800°C for 30 a, we observed a ‘defect-free’ surface region (- 1 μ for 3 MeV implant). Below this region, extensive secondary defects were formed in a band which was 0.7 μ wide and centered at 2 μ for 3 MeV implant. These defects were mostly dislocations lying in the [111] plane. SIMS depth profiles of Si implants showed the Si peak to be very close to the peak position of the defects. The experimental profiles of Si were compared to the TRIM calculation; generally good agreement existed among the peak positions.


1985 ◽  
Vol 58 (4) ◽  
pp. 1143-1147 ◽  
Author(s):  
F. L. Powell ◽  
F. A. Lopez ◽  
P. D. Wagner

We have detected acetone in several brands of heparin. If uncorrected, this leads to errors in measuring acetone in blood collected in heparinized syringes, as in the multiple inert gas elimination technique for measuring ventilation-perfusion ratio (VA/Q) distributions. Error for acetone retention [R = arterial partial pressure-to-mixed venous partial pressure (P-V) ratio] is usually small, because R is normally near 1.0, and the error is similar in arterial and mixed venous samples. However, acetone excretion [E = mixed expired partial pressure (P-E)-to-P-V ratio] will appear erroneously low, because P-E is accurately measured in dry syringes, but P-V is overestimated. A physical model of a homogeneous alveolar lung at room temperature and without dead space shows: the magnitude of acetone E error depends upon the ratio of blood sample to heparinized saline volumes and acetone partial pressures, without correction, acetone E can be less than that of less soluble gases like ether, a situation incompatible with conventional gas exchange theory, and acetone R and E can be correctly calculated using the principle of mass balance if the acetone partial pressure in heparinized saline is known. Published data from multiple inert gas elimination experiments with acetone-free heparin, in our labs and others, are within the limits of experimental error. Thus the hypothesis that acetone E is anomalously low because of physiological mechanisms involving dead space tissue capacitance for acetone remains to be tested.


2015 ◽  
Vol 8 (6) ◽  
pp. 2625-2638 ◽  
Author(s):  
L. Wu ◽  
O. Hasekamp ◽  
B. van Diedenhoven ◽  
B. Cairns

Abstract. We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.


1983 ◽  
Vol 105 (3) ◽  
pp. 277-284 ◽  
Author(s):  
P. Meijers ◽  
F. Roode

A general description of creep and plastic deformation based on overlay models is presented. This includes the description of time effects during plastic deformation at room temperature. A detailed procedure to obtain the model parameters is also discussed. The description has been evaluated for a large number of uniaxial and biaxial load histories on thin walled tubes. The materials involved are a 2 1/4 Cr-1 Mo steel stabilized with Niobium (WN 1.6770) and a 304 stainless steel (WN 1.4948). The theoretical predictions of the plastic deformations are found to be sufficiently accurate. The evaluation of the phenomenological description for creep shows a fairly good agreement with the real creep deformation process. Special attention requires the description of softening due to microstructural changes.


1975 ◽  
Vol 30 (3) ◽  
pp. 287-291 ◽  
Author(s):  
I. Gryczyński ◽  
A. Kawski

A variation of the temperature changes the static dielectric constant (ε) and the refractive index (n) of solvents and, in conjunction with the measurement of solvent shifts of absorption and fluorescence maxima, allows the investigation of dipole moment changes of solutes in the excited state. For this purpose, investigations of the temperature dependences of ε and n of some pure and mixed solvents of different polarities have been made. It is found that the excited dipole moments of indole, 1,2-dimethylindole, 2,3-dimethylindole and tryptophan obtained from the shifts of the fluorescence maxima in mixed solvents at high temperatures are in good agreement with those obtained in other ways.


Sign in / Sign up

Export Citation Format

Share Document