scholarly journals Thermomechanical modelling of Northern Hemisphere ice sheets with a two-level mass-balance parameterization

1995 ◽  
Vol 21 ◽  
pp. 111-116 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’ Siobbel

A three-dimensional time-dependent thermomechanical ice-sheet model was used together with a two-level (snow-accumulation/runoff) mass-balance model to investigate the Quaternary ice sheets of the Northern Hemisphere. The model freely generates the ice-sheet geometry in response to specified changes in surface temperature and mass balance, and includes bedrock adjustment, basal sliding and a full temperature calculation within the ice. The mass-balance parameterization makes a distinction between snowfall and melting. Yearly snowfall rates depend on the present precipitation distribution, and are varied proportionally to changes in surface temperature and the moisture content of the air. The ablation model is based on the positive-degree-day method, and distinguishes between ice and snow melting. This paper discusses steady-slate characteristics, conditions for growth and retreat, and response time-scales of ice sheets as a function of a prescribed lowering of summer temperature. Most notably, the modelled extents of the Eurasian ice sheet for a summer temperature lowering of 6–7 K and of the Laurentide ice sheet for a cooling of 9–10 K are in reasonable agreement with most reconstructions based on geological evidence, except for the presence of a large ice sheet stretching from Alaska across the Bering Strait to most of eastern Siberia. In addition, wet basal conditions turned out to be always confined to the margin, whereas central areas in these reconstructions remained always cold-based. This is of relevance for processes involving reduced basal traction.

1995 ◽  
Vol 21 ◽  
pp. 111-116 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’ Siobbel

A three-dimensional time-dependent thermomechanical ice-sheet model was used together with a two-level (snow-accumulation/runoff) mass-balance model to investigate the Quaternary ice sheets of the Northern Hemisphere. The model freely generates the ice-sheet geometry in response to specified changes in surface temperature and mass balance, and includes bedrock adjustment, basal sliding and a full temperature calculation within the ice. The mass-balance parameterization makes a distinction between snowfall and melting. Yearly snowfall rates depend on the present precipitation distribution, and are varied proportionally to changes in surface temperature and the moisture content of the air. The ablation model is based on the positive-degree-day method, and distinguishes between ice and snow melting. This paper discusses steady-slate characteristics, conditions for growth and retreat, and response time-scales of ice sheets as a function of a prescribed lowering of summer temperature. Most notably, the modelled extents of the Eurasian ice sheet for a summer temperature lowering of 6–7 K and of the Laurentide ice sheet for a cooling of 9–10 K are in reasonable agreement with most reconstructions based on geological evidence, except for the presence of a large ice sheet stretching from Alaska across the Bering Strait to most of eastern Siberia. In addition, wet basal conditions turned out to be always confined to the margin, whereas central areas in these reconstructions remained always cold-based. This is of relevance for processes involving reduced basal traction.


2021 ◽  
Vol 15 (2) ◽  
pp. 1131-1156
Author(s):  
Marie-Luise Kapsch ◽  
Uwe Mikolajewicz ◽  
Florian A. Ziemen ◽  
Christian B. Rodehacke ◽  
Clemens Schannwell

Abstract. A realistic simulation of the surface mass balance (SMB) is essential for simulating past and future ice-sheet changes. As most state-of-the-art Earth system models (ESMs) are not capable of realistically representing processes determining the SMB, most studies of the SMB are limited to observations and regional climate models and cover the last century and near future only. Using transient simulations with the Max Planck Institute ESM in combination with an energy balance model (EBM), we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for the Northern Hemisphere ice sheets throughout the last deglaciation. The EBM is used to calculate and downscale the SMB onto a higher spatial resolution than the native ESM grid and allows for the resolution of SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation, changes in insolation dominate the Greenland SMB. The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation: the warming of the atmosphere leads to an increase in melt at low elevations along the ice-sheet margins, while it results in an increase in accumulation at higher levels as a warmer atmosphere precipitates more. After 13 ka, the increase in melt begins to dominate, and the SMB decreases. The decline in Northern Hemisphere summer insolation after 9 ka leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are centennial-scale episodes of abrupt SMB and ELA decreases related to slowdowns of the Atlantic meridional overturning circulation (AMOC) that lead to a cooling over most of the Northern Hemisphere.


1984 ◽  
Vol 30 (105) ◽  
pp. 140-152 ◽  
Author(s):  
G. S. Boulton ◽  
G. D. Smith ◽  
L. W. Morland

AbstractA model of a non-linearly viscous ice sheet is used to investigate the influence of net mass-balance pattern, basal boundary condition, and subglacial topography on the size and shape of ice sheets. The aim is to enable geological evidence of the extent of former ice sheets to be used as indicators of palaeoclimate. A series of curves are presented showing the relationships between ice-sheet span, net mass balance, and equilibrium-line altitude (ELA) for zero and complete isostatic compensation. These are applicable to a very wide range of basal boundary conditions. The way in which they can be used to reconstruct net mass-balance gradients for former ice sheets is demonstrated. Changes in the basal boundary condition only have a strong influence on glacier span when they occur in the terminal zone. Ice-sheet expansion and contraction is not merely accompanied by changes in snow-line elevation, but also by changes in the net mass-balance gradient. The combinations of these required to cause ice-sheet expansion and contraction are analysed. A non-linearly viscous model for ice suggests that ice-sheet volume changes may not be a simple function of their change in areal extent.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


1984 ◽  
Vol 5 ◽  
pp. 100-105 ◽  
Author(s):  
S. Manabe ◽  
A. J. Broccoli

The climatic influence of the land ice which existed 18 ka BP is investigated using a climate model developed at the Geophysical Fluid Dynamics Laboratory of the National Oceanic and Atmospheric Administration. The model consists of an atmospheric general circulation model coupled with a static mixed layer ocean model. Simulated climates are obtained from each of two versions of the model: one with the land-ice distribution of the present and the other with that of 18 ka BP.In the northern hemisphere, the difference in the distribution of sea surface temperature (SST) between the two experiments resembles the difference between the SST at 18 ka BP and at present as estimated by CLIMAP Project Members (1981). In the northern hemisphere a substantial lowering of air temperature also occurs in winter, with a less pronounced cooling during summer. The mid-tropospheric flow field is influenced by the Laurentide ice sheet and features a split jet stream straddling the ice sheet and a long wave trough along the east coast of North America. In the southern hemisphere of 18 ka BP, the ice sheet has little influence on temperature. An examination of hemispheric heat balances indicates that this is because only a small change in interhemispheric heat transport exists, as the In situ radiative compensation in the northern hemisphere counterbalances the effective reflection of solar radiation by continental ice sheets.Hydrologic changes in the model climate are also found, with statistically significant decreases in soil moisture occurring in a zone located to the south of the ice sheets in North America and Eurasia. These findings are consistent with some geological evidence of regionally drier climates from the last glacial maximum.


1999 ◽  
Vol 52 (1) ◽  
pp. 27-43 ◽  
Author(s):  
Alun Hubbard

Ice-sheet modeling tightly constrained by empirical studies provides an effective framework to reconstruct past climatic and environmental conditions. Scotland was severely affected by the abrupt climate change associated with the Younger Dryas Stade, during which an extensive ice sheet formed across the west highlands after a period of ice-free conditions. Here, a quasi-three-dimensional, time-dependent ice flow/mass-balance model is developed and applied to Scotland at 1 km resolution. The flow model is based on the driving stress approximation with an additional longitudinal correction term, essential at this scale of operation. Surface mass balance is driven by temperature and precipitation changes and further mass wastage is achieved through an empirically defined calving term. The ice dynamics and mass-balance components are coupled through the equation for mass continuity, which is integrated through time over a finite-difference grid which yields the geometric evolution of the ice sheet. Initial experiments reveal the model to be relatively insensitive to internal parameters but highly sensitive to mass balance. Furthermore, these experiments indicate that Scotland is readily susceptible to glaciation with large glaciers building up on the flanks of Ben Nevis after a temperature depression of 2.5°C, under present-day precipitation.The Younger Dryas is modeled using a GRIP temperature series locally adjusted for amplitude and a systematic series of runs enables the isolation of the climate which best matches mapped ice limits. This “optimum-fit” configuration requires an annual temperature cooling of 8°C and the introduction of substantial west–east and south–north precipitation gradients of 40 and 50%, respectively, to the present-day regime. Under these conditions, a series of substantial independent regional ice centers develop in agreement with trimline studies and after 550 year the modeled ice sheet closely resembles the maximum limits as indicated by field mapping. However, modeled ice continues to expand beyond 550 yr, in conflict with the mapped ice limits which suggest a prolonged period of stability. This discrepancy may be explained by the onset of extreme aridity ca. 400 yr into the Stade associated with a southern migration of the Polar Front, leading to a reduction in atmospheric circulation which effectively starved the ice sheet of its moisture source, preventing further expansion. Introduction of an additional 20% reduction in precipitation to the “optimum-fit” regime after 350 yr brings the modeled ice sheet to equilibrium, substantiating this conclusion.


2016 ◽  
Vol 62 (234) ◽  
pp. 607-622 ◽  
Author(s):  
CLAUDIA WEKERLE ◽  
FLORENCE COLLEONI ◽  
JENS-OVE NÄSLUND ◽  
JENNY BRANDEFELT ◽  
SIMONA MASINA

ABSTRACTNumerous ice-sheet reconstructions of the last glacial cycle have been proposed, however due to limited geological evidence, reconstructing older Northern Hemisphere ice sheets remains a difficult exercise. Here we focus on the penultimate glacial maximum (PGM; ~140 ka BP) over the Northern Hemisphere. While some evidence of the PGM Eurasian ice-sheet extent were found, this is not the case for the corresponding Laurentide ice sheet. To improve the glaciological reconstructions of the PGM Northern Hemisphere ice sheets, we explore the parameter space of ice-sheet model uncertainties and carry out numerous univariate ice-sheet steady-state sensitivity simulations. We use two PGM climate simulations to force the ice-sheet model, differing in the prescribed Laurentide ice topography (small and large). The simulated Northern Hemisphere ice volume ranges from 124.7 to 152 m SLE when using the climate accounting for a small Laurentide ice sheet, which is compatible with global sea-level reconstructions of this period (−92 to −150 m). Conversely, using the climate simulation with a Laurentide ice sheet comparable in size to that of the last glacial maximum results in too large ice volumes. Changes in basal drag provide the upper bound ice volume of our experiments, whereas changes in the distribution of ice streams provide the lower bound.


1997 ◽  
Vol 25 ◽  
pp. 333-339 ◽  
Author(s):  
Philippe Huybrechts ◽  
Stephen T’siobbel

A quasi-three-dimensional (3-D) climate model (Sellers, 1983) was used to simulate the climate of the Last Glacial Maximum (LGM) in order to provide climatic input for the modelling of the Northern Hemisphere ice sheets. The climate model is basically a coarse-gridded general circulation (GCM) with simplified dynamics, and was subject to appropriate boundary conditions for ice-sheet elevation, atmospheric CO2 concentration and orbital parameters. When compared with the present-daysimulation, the simulated climate at the Last Glacial Maximum is characterized by a global annual cooling of 3.5°C and a reduction in global annualprecipitation of 7.5%, which agrees well with results from other, more complex GCMs. Also the patterns of temperature change compare fairly with mostother GCM results, except for a smaller cooling over the North Atlantic and the larger cooling predicted for the summer rather than for the winter over Eurasia.The climate model is able to simulate changes in Northern Hemisphere tropospheric circulation, yielding enhanced westerlies in the vicinity of the Laurentide and Eurasian ice sheets. However, the simulated precipitation patterns are less convincing, and show a distinct mean precipitation increase over the Laurentide ice sheet. Nevertheless, when using the mean-monthly fields of LGM minus present-day anomalies of temperature and precipitation rate to drive a three-dimensional thermomechanical ice-sheet model, it was demonstrated that within realistic bounds of the ice-flow and mass-balance parameters, veryreasonable reconstructions of the Last Glacial Maximum ice sheets could be obtained.


1984 ◽  
Vol 5 ◽  
pp. 100-105 ◽  
Author(s):  
S. Manabe ◽  
A. J. Broccoli

The climatic influence of the land ice which existed 18 ka BP is investigated using a climate model developed at the Geophysical Fluid Dynamics Laboratory of the National Oceanic and Atmospheric Administration. The model consists of an atmospheric general circulation model coupled with a static mixed layer ocean model. Simulated climates are obtained from each of two versions of the model: one with the land-ice distribution of the present and the other with that of 18 ka BP.In the northern hemisphere, the difference in the distribution of sea surface temperature (SST) between the two experiments resembles the difference between the SST at 18 ka BP and at present as estimated by CLIMAP Project Members (1981). In the northern hemisphere a substantial lowering of air temperature also occurs in winter, with a less pronounced cooling during summer. The mid-tropospheric flow field is influenced by the Laurentide ice sheet and features a split jet stream straddling the ice sheet and a long wave trough along the east coast of North America. In the southern hemisphere of 18 ka BP, the ice sheet has little influence on temperature. An examination of hemispheric heat balances indicates that this is because only a small change in interhemispheric heat transport exists, as the In situ radiative compensation in the northern hemisphere counterbalances the effective reflection of solar radiation by continental ice sheets.Hydrologic changes in the model climate are also found, with statistically significant decreases in soil moisture occurring in a zone located to the south of the ice sheets in North America and Eurasia. These findings are consistent with some geological evidence of regionally drier climates from the last glacial maximum.


2003 ◽  
Vol 37 ◽  
pp. 173-180 ◽  
Author(s):  
Chris Zweck ◽  
Philippe Huybrechts

AbstractMechanisms that determine time-dependent changes of the marine ice margin in dynamic ice-sheet models are important but poorly understood. Here we derive an empirical formulation for changes in the marine extent when modelling the Northern Hemisphere ice sheets over the last glacial cycle in a three-dimensional thermomechanically coupled ice-sheet model. We assume that the strongest control on changes in marine extent is ice calving, and that the variable most crucial to calving is water depth. The empirical marine-extent relationship is tuned so that the major marine-retreat history of the Laurentide and Eurasian ice sheets is modelled accurately in time and space. We find that this empirical treatment relating marine extent to water depth is sufficient to reproduce the observations, and discuss the implications for the physics of marine margin changes and the dynamics of the Northern Hemisphere ice sheets since the Last Glacial Maximum.


Sign in / Sign up

Export Citation Format

Share Document