scholarly journals Spectral tomographic analysis of Bremsstrahlung X-rays generated in a laser-produced plasma

2016 ◽  
Vol 34 (4) ◽  
pp. 645-654 ◽  
Author(s):  
Y.J. Rhee ◽  
S.M. Nam ◽  
J. Peebles ◽  
H. Sawada ◽  
M. Wei ◽  
...  

AbstractA new approach is proposed to analyze Bremsstrahlung X-rays that are emitted from laser-produced plasmas (LPP) and are measured by a stack type spectrometer. This new method is based on a spectral tomographic reconstruction concept with the variational principle for optimization, without referring to the electron energy distribution of a plasma. This approach is applied to the analysis of some experimental data obtained at a few major laser facilities to demonstrate the applicability of the method. Slope temperatures of X-rays from LPP are determined with a two-temperature model, showing different spectral characteristics of X-rays depending on laser properties used in the experiments.

2016 ◽  
Vol 41 ◽  
pp. 1660143 ◽  
Author(s):  
R. V. Davydov ◽  
V. I. Antonov ◽  
T. I. Davydova

In this paper a mathematical model for femtosecond laser ablation of metals is proposed, based on standard two-temperature model connected with 1D hydrodynamic equations. Wide-range equation of state has been developed. The simulation results are compared with experimental data for aluminium and copper. A good agreement for both metals with numerical results and experiment shows that this model can be employed for choosing laser parameters to better accuracy in nanoparticles production by ablation of metals.


2009 ◽  
Vol 23 (03) ◽  
pp. 281-284
Author(s):  
XUEQIANG LIU ◽  
YIBIN WANG ◽  
YIZHAO WU

A numerical method which is based on unstructured grids to compute high-temperature ionized air radiation is described. The multi-species N-S equations are used and the chemical model includes 11 species ( O 2, N 2, O , N , NO , NO +, N +, O +, N +2, O +2, e -) and 20 reactions. For simulating thermal non-equilibrium effect, the two-temperature model is considered. The finite volume method (FVM) is used for spatial and directional discretization for the RTE on unstructured grids. The code can deal with different kinds of species and radiative bands. Particularly, the Delta, Epsilon, Beta prime and Gamma prime bands of NO are considered in this paper. The numerical results of MESES-C for hypersonic flow with high-temperature ionized radiation are shown, and compared well with the reference data and experimental data.


2019 ◽  
pp. 105-110
Author(s):  
Mikhail Yongon Lee ◽  
Sergei V. Fedorov

The article describes the structure and the operation principle of the spectrophotometer developed on the basis of a compact rapid monochromator with one input port and two output ports and a radiometric unit where upwelling radiation radiance and sea surface irradiance channels are located. A new approach to measurements of spectral characteristics of upwelling radiation of sea based on combination of advantages of a double beam photometer with a photomultiplier and a directreading photometer with a highstability silicon photodiode for its absolute adjustment in energy units is implemented.


2018 ◽  
Author(s):  
Meng An ◽  
Qichen Song ◽  
Xiaoxiang Yu ◽  
Han Meng ◽  
Dengke Ma ◽  
...  

1992 ◽  
Vol 57 (1) ◽  
pp. 33-45
Author(s):  
Vladimír Jakuš

A new approach to theoretical evaluation of the Gibbs free energy of solvation was applied for estimation of retention data in high-performance liquid chromatography on reversed phases (RP-HPLC). Simple and improved models of stationary and mobile phases in RP-HPLC were employed. Statistically significant correlations between the calculated and experimental data were obtained for a heterogeneous series of twelve compounds.


2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


1978 ◽  
Vol 100 (1) ◽  
pp. 20-24 ◽  
Author(s):  
R. H. Rand

A one-dimensional, steady-state, constant temperature model of diffusion and absorption of CO2 in the intercellular air spaces of a leaf is presented. The model includes two geometrically distinct regions of the leaf interior, corresponding to palisade and spongy mesophyll tissue, respectively. Sun, shade, and intermediate light leaves are modeled by varying the thicknesses of these two regions. Values of the geometric model parameters are obtained by comparing geometric properties of the model with experimental data of other investigators found from dissection of real leaves. The model provides a quantitative estimate of the extent to which the concentration of gaseous CO2 varies locally within the leaf interior.


2004 ◽  
Vol 2004 (IAUS226) ◽  
pp. 506-510
Author(s):  
J. H. Guo ◽  
Y. Li ◽  
H. G. Shan

Sign in / Sign up

Export Citation Format

Share Document