A Theoretical Analysis of CO2 Absorption in Sun Versus Shade Leaves

1978 ◽  
Vol 100 (1) ◽  
pp. 20-24 ◽  
Author(s):  
R. H. Rand

A one-dimensional, steady-state, constant temperature model of diffusion and absorption of CO2 in the intercellular air spaces of a leaf is presented. The model includes two geometrically distinct regions of the leaf interior, corresponding to palisade and spongy mesophyll tissue, respectively. Sun, shade, and intermediate light leaves are modeled by varying the thicknesses of these two regions. Values of the geometric model parameters are obtained by comparing geometric properties of the model with experimental data of other investigators found from dissection of real leaves. The model provides a quantitative estimate of the extent to which the concentration of gaseous CO2 varies locally within the leaf interior.

1999 ◽  
Vol 36 (4) ◽  
pp. 754-759 ◽  
Author(s):  
DFE Stolle ◽  
P A Vermeer ◽  
P G Bonnier

A nonlinear theory of consolidation is presented which takes into account secondary compression. The theory is incorporated into a weak form of equilibrium that is suitable for a finite element procedure. The model is used to interpret Crawford's experimental data on Leda clay. Limitations of the model are discussed, and a few thoughts on the effects of temperature on the evaluation of model parameters are briefly presented.Key words: secondary compression, creep, one-dimensional consolidation, modelling.


1995 ◽  
Vol 117 (1) ◽  
pp. 47-61 ◽  
Author(s):  
O. O. Badmus ◽  
S. Chowdhury ◽  
K. M. Eveker ◽  
C. N. Nett

In this paper, a one-dimensional unsteady compressible viscous flow model of a generic compression system previously developed by the authors is applied to a multistage axial compressor experimental rig configured for single-stage operation. The required model parameters and maps are identified from experimental data. The resulting model is an explicit system of nine first-order ODEs. The model inputs are compressor speed, nozzle area, compressor discharge bleed area, plenum bleed area, inlet total pressure and entropy, and nozzle and bleed exit static pressures. The model and experimental data are compared with respect to both open-loop uncontrolled and closed-loop controlled behaviors. These comparisons focus on (i) forced transients and (ii) global nonlinear dynamics and bifurcations. In all cases the agreement between the model and experimental data is excellent. Of particular interest is the ability of the model, which does not include any hysteretic maps, to predict experimentally observed hysteresis with respect to the onset and cessation of surge. This predictive capability of the model manifests itself as the coexistence of a stable equilibrium (rotating stall) and a stable periodic solution (surge) in the model at a single fixed set of system input values. Also of interest is the fact that the controllers used for closed-loop comparisons were designed directly from the model with no a posteriori tuning of controller parameters. Thus, the excellent closed-loop comparisons between the model and experimental data provide strong evidence in support of the validity of the model for use in direct model based controller design. The excellent agreement between the model and experimental data summarized above is attributed in large part to the use of effective lengths within the model, as functions of axial Mach number and nondimensional compressor rotational speed, as prescribed by the modeling technique. The use of these effective lengths proved to be far superior to the use of physical lengths. The use of these effective lengths also provided substantial improvement over the use of physical lengths coupled with fixed first-order empirical lags, as proposed by other authors for the modeling of observed compressor dynamic lag. The overall success of this model is believed to represent a positive first step toward a complete experimental validation of the approach to control-oriented high-frequency turbomachinery modeling being developed by the authors.


1992 ◽  
Vol 23 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Ole H. Jacobsen ◽  
Feike J. Leij ◽  
Martinus Th. van Genuchten

Breakthrough curves of Cl and 3H2O were obtained during steady unsaturated flow in five lysimeters containing an undisturbed coarse sand (Orthic Haplohumod). The experimental data were analyzed in terms of the classical two-parameter convection-dispersion equation and a four-parameter two-region type physical nonequilibrium solute transport model. Model parameters were obtained by both curve fitting and time moment analysis. The four-parameter model provided a much better fit to the data for three soil columns, but performed only slightly better for the two remaining columns. The retardation factor for Cl was about 10 % less than for 3H2O, indicating some anion exclusion. For the four-parameter model the average immobile water fraction was 0.14 and the Peclet numbers of the mobile region varied between 50 and 200. Time moments analysis proved to be a useful tool for quantifying the break through curve (BTC) although the moments were found to be sensitive to experimental scattering in the measured data at larger times. Also, fitted parameters described the experimental data better than moment generated parameter values.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


2001 ◽  
Author(s):  
Thomas DeMurry ◽  
Yanying Wang

Abstract The primary objectives of this study are (1) to validate the hardware design and control methodologies for preserving the thermo-mechanical integrity of a launch clutch emulating a torque converter and (2) to develop a simple, control oriented clutch-temperature model that may act as a virtual thermocouple in the processor of an automobile for real-time clutch-temperature predictions. In a dynamometer test cell, a Ford CD4E transaxle is instrumented with a thermocouple-based telemetry system to investigate clutch thermal characteristics during engagements, neutral idle, single and repeated launching, torsional isolation, and hill holding. A nonlinear, SIMULINK™-based model for estimating temperature is developed. The results from the simulations are in good agreement with the experimental data.


2021 ◽  
Author(s):  
Sabyasachi Dash ◽  
◽  
Zoya Heidari ◽  

Conventional resistivity models often overestimate water saturation in organic-rich mudrocks and require extensive calibration efforts. Conventional resistivity-porosity-saturation models assume brine in the formation as the only conductive component contributing to resistivity measurements. Enhanced resistivity models for shaly-sand analysis include clay concentration and clay-bound water as contributors to electrical conductivity. These shaly-sand models, however, consider the existing clay in the rock as dispersed, laminated, or structural, which does not reliably describe the distribution of clay network in organic-rich mudrocks. They also do not incorporate other conductive minerals and organic matter, which can significantly impact the resistivity measurements and lead to uncertainty in water saturation assessment. We recently introduced a method that quantitatively assimilates the type and spatial distribution of all conductive components to improve reserves evaluation in organic-rich mudrocks using electrical resistivity measurements. This paper aims to verify the reliability of the introduced method for the assessment of water/hydrocarbon saturation in the Wolfcamp formation of the Permian Basin. Our recently introduced resistivity model uses pore combination modeling to incorporate conductive (clay, pyrite, kerogen, brine) and non-conductive (grains, hydrocarbon) components in estimating effective resistivity. The inputs to the model are volumetric concentrations of minerals, the conductivity of rock components, and porosity obtained from laboratory measurements or interpretation of well logs. Geometric model parameters are also critical inputs to the model. To simultaneously estimate the geometric model parameters and water saturation, we develop two inversion algorithms (a) to estimate the geometric model parameters as inputs to the new resistivity model and (b) to estimate the water saturation. Rock type, pore structure, and spatial distribution of rock components affect geometric model parameters. Therefore, dividing the formation into reliable petrophysical zones is an essential step in this method. The geometric model parameters are determined for each rock type by minimizing the difference between the measured resistivity and the resistivity, estimated from Pore Combination Modeling. We applied the new rock physics model to two wells drilled in the Permian Basin. The depth interval of interest was located in the Wolfcamp formation. The rock-class-based inversion showed variation in geometric model parameters, which improved the assessment of water saturation. Results demonstrated that the new method improved water saturation estimates by 32.1% and 36.2% compared to Waxman-Smits and Archie's models, respectively, in the Wolfcamp formation. The most considerable improvement was observed in the Middle and Lower Wolfcamp formation, where the average clay concentration was relatively higher than the other zones. Results demonstrated that the proposed method was shown to improve the estimates of hydrocarbon reserves in the Permian Basin by 33%. The hydrocarbon reserves were underestimated by an average of 70000 bbl/acre when water saturation was quantified using Archie's model in the Permian Basin. It should be highlighted that the new method did not require any calibration effort to obtain model parameters for estimating water saturation. This method minimizes the need for extensive calibration efforts for the assessment of hydrocarbon/water saturation in organic-rich mudrocks. By minimizing the need for extensive calibration work, we can reduce the number of core samples acquired. This is the unique contribution of this rock-physics-based workflow.


Author(s):  
Deoras Prabhudharwadkar ◽  
Chris Bailey ◽  
Martin Lopez de Bertodano ◽  
John R. Buchanan

This paper describes in detail the assessment of the CFD code CFX to predict adiabatic liquid-gas two-phase bubbly flow. This study has been divided into two parts. In the first exercise, the effect of Lift Force, Wall Force and the Turbulent Diffusion Force have been assessed using experimental data from the literature for air-water upward bubbly flows through a pipe. The data used here had a characteristic near wall void peaking which was largely influenced by the joint action of the three forces mentioned above. The simulations were performed with constant bubble diameter assuming no bubble interactions. This exercise resulted in selection of the most appropriate closure form and closure coefficients for the above mentioned forces for the range of flow conditions chosen. In the second exercise, the One-Group Interfacial Area Transport equation was introduced in the two-fluid model of CFX. The interfacial area density plays important role in the correct prediction of interfacial mass, momentum and energy transfer and is affected by bubble breakup and coalescence processes in adiabatic flows. The One-Group Interfacial Area Transport Equation (IATE) has been developed and implemented for one-dimensional models and validated using cross-sectional area averaged experimental data over the last decade by various researchers. The original one-dimensional model has been extended to multidimensional flow predictions in this study and the results are presented in this paper. The paper also discusses constraints posed by the commercial CFD code CFX and the solutions worked out to obtain the most accurate implementation of the model.


2012 ◽  
Vol 155-156 ◽  
pp. 12-17 ◽  
Author(s):  
Lian Xu Wang ◽  
Da Wei Qu ◽  
Chang Qing Song ◽  
Ye Tian

To research the performance optimization of high speed car diesel engine,firstly according to the characteristic of car diesel engine with Variable Nozzle Turbocharger (VNT), one-dimensional cycle model of the engine was established by using simulation software BOOST and validated by experimental data in this paper. The turbine blades’ opening corresponding to different speed was determined. Therefore the problem that the VNT surges at low engine speed and the inlet air flow is insufficient at high speed was solved. Based on the above model, this paper improved the efficiency of the engine by optimizing the compression ratio and the distribution phase of camshaft and then used the experimental data to check the simulation results. Meanwhile the fuel consumption and the possibility of the engine operation roughness decreased.


2019 ◽  
Author(s):  
Arsenii Dokuchaev ◽  
Svyatoslav Khamzin ◽  
Olga Solovyova

AbstractAgeing is the dominant risk factor for cardiovascular diseases. A great body of experimental data has been gathered on cellular remodelling in the Ageing myocardium from animals. Very few experimental data are available on age-related changes in the human cardiomyocyte. We have used our combined electromechanical model of the human cardiomyocyte and the population modelling approach to investigate the variability in the response of cardiomyocytes to age-related changes in the model parameters. To generate the model population, we varied nine model parameters and excluded model samples with biomarkers falling outside of the physiological ranges. We evaluated the response to age-related changes in four electrophysiological model parameters reported in the literature: reduction in the density of the K+ transient outward current, maximal velocity of SERCA, and an increase in the density of NaCa exchange current and CaL-type current. The sensitivity of the action potential biomarkers to individual parameter variations was assessed. Each parameter modulation caused an increase in APD, while the sensitivity of the model to changes in GCaL and Vmax_up was much higher than to those in the effects of Gto and KNaCa. Then 60 age-related sets of the four parameters were randomly generated and each set was applied to every model in the control population. We calculated the frequency of model samples with repolarisation anomalies (RA) and the shortening of the electro-mechanical window in the ageing model populations as an arrhythmogenic ageing score. The linear dependence of the score on the deviation of the parameters showed a high determination coefficient with the most significant impact due to the age-related change in the CaL current. The population-based approach allowed us to classify models with low and high risk of age-related RA and to predict risks based on the control biomarkers.


Sign in / Sign up

Export Citation Format

Share Document