scholarly journals Lawrence Livermore National Laboratory's activities to achieve ignition by X-ray drive on the National Ignition Facility

1999 ◽  
Vol 17 (2) ◽  
pp. 159-171 ◽  
Author(s):  
J.D. KILKENNY ◽  
T.P. BERNAT ◽  
B.A. HAMMEL ◽  
R.L. KAUFFMAN ◽  
O.L. LANDEN ◽  
...  

The National Ignition Facility (NIF) is a MJ-class glass laser-based facility funded by the Department of Energy which has achieved thermonuclear ignition and moderate gain as one of its main objectives. In the summer of 1998, the project was about 40% complete, and design and construction was on schedule and on cost. The NIF will start firing onto targets in 2001, and will achieve full energy in 2004. The Lawrence Livermore National Laboratory (LLNL) together with the Los Alamos National Laboratory (LANL) have the main responsibility for achieving X-ray driven ignition on the NIF. In the 1990s, a comprehensive series of experiments on Nova at LLNL, followed by recent experiments on the Omega laser at the University of Rochester, demonstrated confidence in understanding the physics of X-ray drive implosions. The same physics at equivalent scales is used in calculations to predict target performance on the NIF, giving credence to calculations of ignition on the NIF. An integrated program of work in preparing the NIF for X-ray driven ignition in about 2007, and the key issues being addressed on the current Inertial Confinement Fusion (ICF) facilities [(Nova, Omega, Z at Sandia National Laboratory (SNL) and NIKE at the Naval Research Laboratory (NRL)], are described.

1997 ◽  
Vol 06 (04) ◽  
pp. 507-533
Author(s):  
W. Howard Lowdermilk

The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility (NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL) for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35 μm laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. France and the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents key aspects of the laser design, and descriptions of principal laser and optical components. Follow-on development of lasers to meet the demands of an inertial fusion energy (IFE) power plant is reviewed. In parallel with the NIF Project and IFE developments, work is proceeding on ultrashort pulse lasers with peak power in the range of 100–1000 TW. A beamline on the Nova laser at LLNL recently delivered nearly 600 J of 1 μm light in a 0.5 ps duration pulse, for a peak power in excess of a petawatt (1015 W). This beamline, with advanced adaptive optics, will be capable of focused intensities in excess of 1021 W/cm2. Its primary purpose will be to test technological and scientific aspects of an alternate ignition concept, called the "Fast Igniter", that has the potential to produce higher fusion gain than conventional ICF.


2003 ◽  
Vol 46 (1) ◽  
pp. 85-97 ◽  
Author(s):  
Stanley Sommer ◽  
Irving Stowers ◽  
David Van Doren

When the stadium-size National Ignition Facility (NIF) is fully operational at the Lawrence Livermore National Laboratory (LLNL), its 192 laser beams will deliver 1.8 megajoules (500 terawatts) of energy onto a target to create extremely high temperatures and pressures for inertial confinement fusion research as part of the Stockpile Stewardship Program. Due to the performance threshold and requirements of the NIF optical components, the optics and their surrounding beampath as well as the supporting utility systems must be fabricated, cleaned, assembled, and commissioned for precision cleanliness. This paper will provide an overview of the NIF cleanliness requirements, the Clean Construction Protocol (CCP) specifications for the beampath and clean utilities, and techniques for verifying the CCP specifications. The NIF cleanliness requirements define limits for molecular and particulate contamination. The goal of these limits is to prevent contamination of optical components. To prevent laser-induced damage and poor laser quality in the optical components, requirements for cleaning, assembly, installation, and commissioning in terms of particle and nonvolatile residue (NVR) levels are defined. The airborne cleanliness requirements in the interior of the beampath are Class 1 (ISO Class 3) particulate levels and a few parts-per-billion (ppb) airborne molecular contamination (AMC) (SEMI F21-95 MC-1,000). To achieve the cleanliness requirements for the beampath interior, a graded CCP approach is used as the NIF beampath and utilities are being constructed by a partnership between LLNL and the construction contractor, Jacobs Facilities Inc. (JFI) in a stadium-size Class 100,000 (ISO Class 8) building. Installation of the beampath components utilizes localized mini-environments of Class 100 (ISO Class 5) or better, with budgets of cleanliness exposure or "class-hours" for each clean connection. Garment, equipment, and operational considerations are evaluated with process verification. Verification of the beampath and utility cleanliness is performed with cleanliness exposure monitoring, evaluating particulates with "swipes" and the LLNL-developed Precision Cleanliness Verification System (PCVS), and measuring nonvolatile residues (NVRs) and AMCs with analytical chemistry techniques. Cleanliness verification results demonstrate that the CCP specifications are achieving the NIF cleanliness requirements for the beampath and clean utilities.


2006 ◽  
Vol 77 (10) ◽  
pp. 10E301 ◽  
Author(s):  
Riccardo Tommasini ◽  
Jeffrey A. Koch ◽  
Bruce Young ◽  
Ed Ng ◽  
Tom Phillips ◽  
...  

Author(s):  
M. Caro ◽  
P. DeMange ◽  
J. Marian ◽  
A. Caro

Among the laser inertial fusion-fission energy (LIFE) engine concepts being considered at Lawrence Livermore National Laboratory (LLNL), weapons-grade plutonium (WGPu) LIFE is of particular interest because it is designed to burn excess WGPu material and achieve over 99% fraction of initial metal atoms (FIMAs). At the center of the LIFE concept lies a point source of 14MeV neutrons produced by inertial-confinement fusion (ICF) which drives a sub-critical fuel blanket located behind a neutron multiplier. Current design envisions tristructural isotropic (TRISO) particles embedded in a graphite matrix as fuel and Be as multiplier, both in pebble bed form and flowing in Flibe molten salt coolant. In previous work, neutron lifetime modeling and design of Be pebbles was discussed [10]. Constitutive equations were derived and a design criteria were developed for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure in the neutron multiplier for the LIFE engine. Utilizing the available material property data, Be pebbles lifetime could be estimated to be a minimum of 6 years. Here, we investigate the thermo-mechanical response of TRISO particles used for incineration of WUPu under LIFE operating conditions of high temperature and high neutron fast fluence. To this purpose, we make use of the thermo-mechanical fuel performance code HUPPCO, which is currently under development. The model accounts for spatial and time dependence of the material elastic properties, temperature, and irradiation swelling and creep mechanisms. Preliminary results show that the lifetime of WGPu TRISO particles is affected by changes in the fuel materials properties in time. At high fuel burnup, retention of fission products relies on the SiC containment boundary behavior as a minute pressure vessel. The discussion underlines the need to develop high-fidelity models of the performance of these new fuel designs, especially in the absence of a fast neutron source to test these fuels under relevant conditions.


2018 ◽  
Vol 116 (37) ◽  
pp. 18233-18238 ◽  
Author(s):  
Bruce A. Remington ◽  
Hye-Sook Park ◽  
Daniel T. Casey ◽  
Robert M. Cavallo ◽  
Daniel S. Clark ◽  
...  

The Rayleigh–Taylor (RT) instability occurs at an interface between two fluids of differing density during an acceleration. These instabilities can occur in very diverse settings, from inertial confinement fusion (ICF) implosions over spatial scales of∼10−3−10−1cm (10–1,000 μm) to supernova explosions at spatial scales of∼1012cm and larger. We describe experiments and techniques for reducing (“stabilizing”) RT growth in high-energy density (HED) settings on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. Three unique regimes of stabilization are described: (i) at an ablation front, (ii) behind a radiative shock, and (iii) due to material strength. For comparison, we also show results from nonstabilized “classical” RT instability evolution in HED regimes on the NIF. Examples from experiments on the NIF in each regime are given. These phenomena also occur in several astrophysical scenarios and planetary science [Drake R (2005)Plasma Phys Controlled Fusion47:B419–B440; Dahl TW, Stevenson DJ (2010)Earth Planet Sci Lett295:177–186].


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. L. Shaw ◽  
M. A. Romo-Gonzalez ◽  
N. Lemos ◽  
P. M. King ◽  
G. Bruhaug ◽  
...  

AbstractLaser-plasma accelerators (LPAs) driven by picosecond-scale, kilojoule-class lasers can generate particle beams and x-ray sources that could be utilized in experiments driven by multi-kilojoule, high-energy-density science (HEDS) drivers such as the OMEGA laser at the Laboratory for Laser Energetics (LLE) or the National Ignition Facility at Lawrence Livermore National Laboratory. This paper reports on the development of the first LPA driven by a short-pulse, kilojoule-class laser (OMEGA EP) connected to a multi-kilojoule HEDS driver (OMEGA). In experiments, electron beams were produced with electron energies greater than 200 MeV, divergences as low as 32 mrad, charge greater than 700 nC, and conversion efficiencies from laser energy to electron energy up to 11%. The electron beam charge scales with both the normalized vector potential and plasma density. These electron beams show promise as a method to generate MeV-class radiography sources and improved-flux broadband x-ray sources at HEDS drivers.


2009 ◽  
Vol 27 (1) ◽  
pp. 123-127 ◽  
Author(s):  
A. Seifter ◽  
G.A. Kyrala ◽  
S.R. Goldman ◽  
N.M. Hoffman ◽  
J.L. Kline ◽  
...  

AbstractImplosions using inertial confinement fusion must be highly symmetric to achieve ignition on the National Ignition Facility. This requires precise control of the drive symmetry from the radiation incident on the ignition capsule. For indirect drive implosions, low mode residual perturbations in the drive are generated by the laser-heated hohlraum geometry. To diagnose the drive symmetry, previous experiments used simulated capsules by which the self-emission X-rays from gas in the center of the capsule during the implosion are used to infer the shape of the drive. However, those experiments used hohlraum radiation temperatures higher than 200 eV (Hauer et al., 1995; Murphy et al., 1998a, 1998b) with small NOVA scale hohlraums under which conditions the symcaps produced large X-ray signals. At the foot of the NIF ignition pulse, where controlling the symmetry has been shown to be crucial for obtaining a symmetric implosion (Clark et al., 2008), the radiation drive is much smaller, reducing the X-ray emission from the imploded capsule. For the first time, the feasibility of using symcaps to diagnose the radiation drive for low radiation temperatures, <120 eV and large 0.7 linear scales NIF Rev3.1 (Haan et al., 2008) vacuum hohlraums is demonstrated. Here we used experiments at the Omega laser facility to demonstrate and develop the symcap technique for tuning the symmetry of the NIF ignition capsule in the foot of the drive pulse.


Author(s):  
E. M. Campbell ◽  
T. C. Sangster ◽  
V. N. Goncharov ◽  
J. D. Zuegel ◽  
S. F. B. Morse ◽  
...  

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser–plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser–plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the ‘polar-drive’ configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.


2019 ◽  
Vol 37 (01) ◽  
pp. 141-158
Author(s):  
N. Carpintero-Santamaría ◽  
J. Manuel Perlado

AbstractIn 1988 Professor Guillermo Velarde, founder of the Instituto de Fusión Nuclear (IFN), chaired the 19th European Conference on Laser Interaction with Matter held in Madrid on 3–7 October 1988. About 170 scientists from Europe, the Soviet Union, United States, Japan, Canada, Israel, Australia, China, and South Africa participated in the ECLIM 88. ECLIM 88 was among ECLIM's series a turning point in inertial confinement fusion (ICF) research. The work already performed by different laboratories in Europe, Japan, and around the world had reached a level such that without explicitly expressing it, the collective scientific consensus wanted a change in the existing close policies in several ICF areas at large Laboratories in the USA, Russia, France, and UK.Dr. Erik Storm from the US Lawrence Livermore National Laboratory proposed to Professor Velarde to write a letter to be signed by the participants of the ECLIM in favor of having an open international collaboration in ICF. Professor Velarde then suggested drawing up a manifesto instead of a letter because the name manifesto had bigger historical connotations. The manifesto received a very successful response among the conference participants and was signed by more than 130 scientists. Our paper aims at twofold objective: (1) to put into account the positive repercussions derived from the MADRID MANIFESTO in the ICF research and (2) to remember the figure of Professor Guillermo Velarde, the most influential physicist in nuclear fusion energy by inertial confinement along the 20th century. His inspiration and leadership in science contributed to make this world a safer and secure place and for us, his disciples and colleagues, an irreplaceable personality in our lives.


Sign in / Sign up

Export Citation Format

Share Document