A fast tracking error control method for an autonomous mobile robot

Robotica ◽  
1993 ◽  
Vol 11 (3) ◽  
pp. 209-215 ◽  
Author(s):  
S.S. Lee ◽  
J.H. Williams

SUMMARYThis paper proposes a fast tracking error control method for a mobile robot with two differentially driven wheels. The tracking error between reference state and current state is transformed to the required displacement changes of each drive wheel by a wheel Jacobian. The major objective of this paper is to propose a control method for eliminating the tracking error quickly by controlling two independent driving wheels at the same time. To avoid long computational requirements of a Cartesian-based control, a kinematic model of the vehicle and co-ordinate system are introduced. Several simulation results are presented using this method. The fast tracking error control method proposed is mainly hardware-independent and Hence can be applied to various kinds of mobile robots which have two differentially driven wheels. The method was implemented on an experimental vehicle, WCVS, The experimentation shows a performance suitable for practical applications.

2020 ◽  
Vol 26 (23-24) ◽  
pp. 2329-2339
Author(s):  
Randa Herzallah ◽  
Yuyang Zhou

This article proposes the exploitation of the Kullback–Leibler divergence to characterise the uncertainty of the tracking error for general stochastic systems without constraints of certain distributions. The general solution to the fully probabilistic design of the tracking error control problem is first stated. Further development then focuses on the derivation of a randomised controller for a class of linear stochastic Gaussian systems that are affected by multiplicative noise. The derived control solution takes the multiplicative noise of the controlled system into consideration in the derivation of the randomised controller. The proposed fully probabilistic design of the tracking error of the system dynamics is a more legitimate approach than the conventional fully probabilistic design method. It directly characterises the main objective of system control. The efficiency of the proposed method is then demonstrated on a flexible beam example where the vibration quenching in flexible beams is shown to be effectively suppressed.


2010 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
T. BAKHTIAR

This paper studies the optimal tracking error control problem on an inverted pendulum model. We characterize the optimal tracking error in term of pendulum’s parameters. Particularly, we derive the closed form expression for the pendulum length which gives minimum error. It is shown that the minimum error can always be accomplished as long as the ratio between the mass of the pendulum and that of the cart satisfies a certain constancy, regardless the type of material we use for the pendulum.


2000 ◽  
Vol 122 (4) ◽  
pp. 616-623 ◽  
Author(s):  
W. E. Dixon ◽  
D. M. Dawson ◽  
E. Zergeroglu

This paper presents the design of a variable structure-like tracking controller for a mobile robot system. The controller provides robustness with regard to bounded disturbances in the kinematic model. Through the use of a dynamic oscillator and a Lyapunov-based stability analysis, we demonstrate that the position and orientation tracking errors exponentially converge to a neighborhood about zero that can be made arbitrarily small (i.e., the controller ensures that the tracking error is globally uniformly ultimately bounded (GUUB)). In addition, we illustrate how the proposed tracking controller can also be utilized to achieve GUUB regulation to an arbitrary desired setpoint. An extension is also provided that illustrates how a smooth, time-varying control law can be utilized to achieve setpoint regulation despite parametric uncertainty in the kinematic model. Simulation results are presented to demonstrate the performance of the proposed controllers. [S0022-0434(00)00504-9]


Robotica ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 269-279 ◽  
Author(s):  
Gustavo Scaglia ◽  
Lucía Quintero Montoya ◽  
Vicente Mut ◽  
Fernando di Sciascio

SUMMARYThis paper presents the design of four controllers for a mobile robot such that the system may follow a preestablished trajectory. To reach this aim, the kinematic model of a mobile robot is approximated using numerical methods. Then, from such approximation, the control actions to get a minimal tracking error are calculated. Both simulation and experimental results on a PIONEER 2DX mobile robot are presented, showing a good performance of the four proposed mobile robot controllers. Also, an application of the proposed controllers to a leader robot following problem is shown; in it, the relative position between robots is obtained through a laser.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 228
Author(s):  
Tao Yang ◽  
Ziwen Bai ◽  
Zhiqiang Li ◽  
Nenglian Feng ◽  
Liqing Chen

Aiming at the problems of control stability of the intelligent vehicle lateral control method, single test conditions, etc., a lateral control method with feedforward + predictive LQR is proposed, which can better adapt to the problem of intelligent vehicle lateral tracking control under complex working conditions. Firstly, the vehicle dynamics tracking error model is built by using the two degree of freedom vehicle dynamics model, then the feedforward controller, predictive controller and LQR controller are designed separately based on the path tracking error model, and the lateral control system is built. Secondly, based on the YOLO-v3 algorithm, the environment perception system under the urban roads is established, and the road information is collected, the path equation is fitted and sent to the control system. Finally, the joint simulation is carried out based on CarSim software and a Matlab/Simulink control model, and tested combined with hardware in the loop test platform. The results of simulation and hardware-in-loop test show that the transverse controller with feedforward + predictive LQR can effectively improve the accuracy of distance error control and course error control compared with the transverse controller with feedforward + LQR control, LQR controller and MPC controller on the premise that the vehicle can track the path in real time.


2014 ◽  
Vol 644-650 ◽  
pp. 265-271 ◽  
Author(s):  
Jian Gao ◽  
Shi Long Zhang

The positioning accuracy of tracked mobile robot is low because of sliding in steering process. Taking the micro-tracked mobile robot as the platform, the interface force between tracks and ground was analyzed, and the motor model, kinematic model and dynamic model were established further. A tracking error controller was built based on the tracking error equations, and the co-simulation of mechanical and control system was applied to predict the robot’s trajectory. That controller was applied on a small tracked mobile robot designed by the authors’ laboratory, and the path tracking experiments with and without obstacles had been done. The results show that the robot can accurately track the given path, whether there are obstacles or not.


Author(s):  
Chinedum Okwudire ◽  
Yusuf Altintas

This paper presents modeling, identification, and discrete-time sliding mode control of ball screw drives with structural flexibility. The mechanical system of the drive is modeled by a two degree-of-freedom system dominated by the coupled longitudinal and torsional dynamics of the drive assembly whose parameters are identified. A mode-compensating disturbance adaptive discrete-time sliding mode controller is then designed to actively suppress the vibrations of the drive. However, it is shown theoretically that, without using minimum tracking error filters, the tracking errors of the drive do not go to zero when sliding mode is reached. Therefore, a method for designing stable and robust minimum tracking error filters, irrespective of the identified open-loop behavior of the drive is proposed. The identification and control of flexible ball screw drives are experimentally tested, and the tracking accuracy of the drives is shown to improve considerably as a result of the designed minimum tracking error filters.


Sign in / Sign up

Export Citation Format

Share Document