A new methodology for the determination of the workspace of six-DOF redundant parallel structures actuated by nine wires

Robotica ◽  
2006 ◽  
Vol 25 (1) ◽  
pp. 113-120 ◽  
Author(s):  
Carlo Ferraresi ◽  
Marco Paoloni ◽  
Francesco Pescarmona

The WiRo-6.3 is a six-degrees of freedom (six-DOF) robotic parallel structure actuated by nine wires, whose characteristics have been thoroughly analyzed in previous papers in reference. It is thought to be a master device for teleoperation; thus, it is moved by an operator through a handle and can convey a force reflection on the operator's hand. A completely new method for studying the workspace of this device, and of virtually any nine-wire parallel structure actuated by wire is presented and discussed, and its results are given in a graphical form.

2017 ◽  
Vol 11 (3) ◽  
pp. 385-395
Author(s):  
Carlo Ferraresi ◽  
◽  
Carlo De Benedictis ◽  
Francesco Pescarmona

This study focuses on the specific problems that may arise in the development of a parallel, cable-driven device designed for teleoperations systems utilizing force-reflection feedback. A redundant six degrees-of-freedom structure, actuated by nine wires, is described as a convenient layout for a haptic master for telemanipulation. A methodology for the kinematic and static analysis and the evaluation of the device workspace is described. The condition of force closure is used to find all available poses of the end-effector, thereby defining the workspace, whose characteristics are assessed by opportunely conceived indexes. Typical characteristics of cable and implementations thereof in the device are considered. Regarding the realization of the device, relevant attention is given to the definition of the control logic, which can be complex for parallel devices. The selection of the actuators, crucial in realizing force feedback, is discussed. In particular, pneumatic actuation is considered, verified as the most appropriate method for implementation and force control of the cylinders.


Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 355
Author(s):  
Saad M. S. Mukras ◽  
Hanafy M. Omar

The development of multirotor vehicles can often be a dangerous and costly undertaking due to the possibility of crashes resulting from faulty controllers. The matter of safety in such activities has primarily been addressed through the use of testbeds. However, testbeds for testing multirotor vehicles with suspended loads have previously not been reported. In this study, a simple yet novel testing platform was designed and built to aid in testing and evaluating the performances of multirotor flying vehicles, including vehicles with suspended loads. The platform allows the flying vehicle to move with all six degrees of freedom (DOF). Single or three-DOF motions can also be performed. Moreover, the platform was designed to enable the determination of the mass properties (center of mass and moments of inertia) of small multirotor vehicles (which are usually required in the development of new control systems). The applicability of the test platform for the in-flight performance testing of a multirotor vehicle was successfully demonstrated using a Holybro X500 quadcopter with a suspended load. The test platform was also successfully used to determine the mass properties of the vehicle.


2018 ◽  
Vol 190 ◽  
pp. 07004
Author(s):  
Birk Wonnenberg ◽  
Franz Dietrich ◽  
Klaus Dröder

The paper presents investigations on a forming process, which is implemented in a forming press based on a Stewart platform. In contrast to common forming techniques, this buildup offers not only one but six degrees of freedom. This is of particular interest when it comes to the forming of materials that show significant anisotropic behaviour such as fibre-reinforced plastics. Therefore, an experimental setup is presented to record characteristic variables during the forming process of fibre-reinforced thermoplastics. The contact state is of particular interest for this kind of forming process because it changes continuously in shape and position as the forming process progresses. For this purpose, temperatures at different places in the tool are recorded to provide information about the flow velocity of the material and the contact state between tool and workpiece. This allows the determination of the exact time and position of the contact between material and forming tool as well as the duration of this contact. The results are compared with optical measurements analysed by image processing algorithm and process forces measured by load cells.


2012 ◽  
Vol 251 ◽  
pp. 231-234
Author(s):  
Gang Li ◽  
Ya Dong Chen ◽  
Bo Wang ◽  
Wan Shan Wang

In this paper, we present the modeling and dynamics simulation of a six-DOF tunnel segment erector for tunnel boring machine (TBM), which is performed in the virtual prototype platform. The 3D virtual assembling model of a tunnel segment erector is built based on Pro/E software according to its design parameters such as structure and size. After the interference inspection, the model is imported into ADAMS through the interface module of Mech/Pro. The model is simplified and optimized reasonably and various constraints are applied under variety working conditions. The results of simulation show that the design has six degrees of freedom movement capacity which meets the design requirements. At the same time the dynamics characteristics of drives and the forces of each part are obtained and they will provide a boundary condition for strength check and basis for the power system design which is important for the further optimal design.


1995 ◽  
Vol 117 (4) ◽  
pp. 383-389 ◽  
Author(s):  
J. M. Hollis

A joint testing system was designed to transmit a specified motion or force to a joint in all six degrees of freedom (d.o.f.) using a spatial linkage system for position feedback. The precise reproducibility of position provided by this method of position feedback allows determination of in situ ligament forces for external joint loadings. Load on the structure of interest is calculated from six d.o.f. load cell output after the loaded position is reproduced with all other structures removed. In a test of this system, measured loads showed good agreement with applied loads.


2014 ◽  
Vol 14 (5) ◽  
pp. 263-269 ◽  
Author(s):  
Dimitar Dichev ◽  
Hristofor Koev ◽  
Totka Bakalova ◽  
Petr Louda

Abstract The present paper considers a new measurement concept of modeling measuring instruments for gyro-free determination of the parameters of moving objects. The proposed approach eliminates the disadvantages of the existing measuring instruments since it is based, on one hand, on a considerably simplified mechanical module, and on the other hand, on the advanced achievements in the area of nanotechnologies, microprocessor and computer equipment. A specific measuring system intended for measuring the trim, heel, roll, and pitch of a ship has been developed in compliance with the basic principles of this concept. The high dynamic accuracy of this measuring system is ensured by an additional measurement channel operating in parallel with the main channel. The operating principle of the additional measurement channel is based on an appropriate correction algorithm using signals from linear MEMS accelerometers. The presented results from the tests carried out by means of stand equipment in the form of a hexapod of six degrees of freedom prove the effectiveness of the proposed measurement concept


2015 ◽  
Vol 7 (2) ◽  
Author(s):  
Ketao Zhang ◽  
Chen Qiu ◽  
Jian S. Dai

The wormlike robots are capable of imitating amazing locomotion of slim creatures. This paper presents a novel centimeter-scale worm robot inspired by a kirigami parallel structure with helical motion. The motion characteristics of the kirigami structure are unravelled by analyzing the equivalent kinematic model in terms of screw theory. This reveals that the kirigami parallel structure with three degrees-of-freedom (DOF) motion is capable of implementing both peristalsis and inchworm-type motion. In light of the revealed motion characteristics, a segmented worm robot which is able to imitate contracting motion, bending motion of omega shape and twisting motion in nature is proposed by integrating kirigami parallel structures successively. Following the kinematic and static characteristics of the kirigami structure, actuation models are explored by employing the linear shape-memory-alloy (SMA) coil springs and the complete procedure for determining the geometrical parameters of the SMA coil springs. Actuation phases for the actuation model with two SMA springs are enumerated and with four SMA springs are calculated based on the Burnside's lemma. In this paper, a prototype of the worm robot with three segments is presented together with a paper-made body structure and integrated SMA coil springs. This centimeter-scale prototype of the worm robot is lightweight and can be used in confined environments for detection and inspection. The study presents an interesting approach of integrating SMA actuators in kirigami-enabled parallel structures for the development of compliant and miniaturized robots.


Author(s):  
Ole A. Eidsvik ◽  
Ingrid Schjølberg

In this paper the hydrodynamic parameters that characterize the behavior of a typical unmanned underwater vehicle are evaluated. A complete method for identifying these parameters is described. The method is developed to give a brief and accurate estimate of these parameters in all six degrees of freedom using basic properties of the vehicle such as dimensions, mass and shape. The method is based on both empirical and analytical results for typical reference geometries (ellipsoids, cubes, etc.). The method is developed to be applicable for a wide variety of UUV designs as these typically varies substantially. The method is then applied to a small observation class ROV. The results are first verified using an experimental method in which the full scale ROV is towed using a planar motion mechanism. An additional verification is performed with numerical simulations using Computational Fluid Dynamics and a radiation/diffraction program. The method shows promising results for both damping and added mass for the tested case. The translational degrees of freedom are more accurate than the rotational degrees of freedom which are expected as most empirical and analytical data are for translational degrees of freedom. The case study also reveals that the relative difference between the numerical simulations and the experimental results are similar to the relative difference between the proposed method and the experiment.


2018 ◽  
Vol 38 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Haixia Wang ◽  
Xiao Lu ◽  
Wei Cui ◽  
Zhiguo Zhang ◽  
Yuxia Li ◽  
...  

Purpose Developing general closed-form solutions for six-degrees-of-freedom (DOF) serial robots is a significant challenge. This paper thus aims to present a general solution for six-DOF robots based on the product of exponentials model, which adapts to a class of robots satisfying the Pieper criterion with two parallel or intersecting axes among its first three axes. Design/methodology/approach The proposed solution can be represented as uniform expressions by using geometrical properties and a modified Paden–Kahan sub-problem, which mainly adopts the screw theory. Findings A simulation and experiments validated the correctness and effectiveness of the proposed method (general resolution for six-DOF robots based on the product of exponentials model). Originality/value The Rodrigues rotation formula is additionally used to turn the complex problem into a solvable trigonometric function and uniformly express six solutions using two formulas.


Author(s):  
Jürgen Schönherr

Abstract The condition of the Jacobian characterizes the transmission quality of manipulators and is used in this paper for the determination of the dimensions of manipulators having best mobility for a defined workspace. Typical planar and spatial manipulators of parallel structure and having 3 or 6 degrees of freedom are used to demonstrate the method of design used. Manipulators having identical degrees of freedom and workspaces and different structures, including those having fixed or variable leg lengths, are compared with respect to their mobility. The computing program developed for the purpose of optimum design performs the kinematic optimization of machines and manipulators of any structure.


Sign in / Sign up

Export Citation Format

Share Document