An efficient algorithm for real time collision detection involving a continuum manipulator with multiple uniform-curvature sections

Robotica ◽  
2014 ◽  
Vol 34 (7) ◽  
pp. 1566-1586 ◽  
Author(s):  
Jinglin Li ◽  
Jing Xiao

SUMMARYA continuum manipulator, such as a multisection trunk/tentacle robot, performs manipulation tasks by continuously deforming into different concave shapes. While such a robot is promising for manipulating a wide range of objects in less-structured and cluttered environments, it poses a greater challenge to collision detection than conventional, articulated manipulators. Existing collision detection algorithms are built upon intersection checking between convex primitives, such as between two convex polygons or polyhedra, with the assumption that both the manipulator and the objects in the environment are modeled in terms of those primitives, for example, as polygonal meshes. However, to approximate a continuum manipulator with a polygonal mesh requires a fine mesh because of its concavity, and each time the manipulator changes its configuration by deforming its shape, the mesh has to be updated for the new configuration. This makes mesh-based collision detection involving such a robot much more computationally expensive than that involving an articulated manipulator with rigid links.Hence, we introduce an efficient algorithm for Collision Detection between a Continuum Manipulator (CD-CoM) and its environment based on analytical intersection checking with nonconvex primitives. Our algorithm applies to the exact model of any continuum manipulator consisting of multiple uniform-curvature sections of toroidal and (sometimes) cylindrical shapes as well as more general continuum manipulators whose sections can be approximated by toroidal and cylindrical primitives. Our test results show that using this algorithm is both more accurate and efficient in time and space to detect collisions than approximating a continuum manipulator as a polygonal mesh. Moreover, the CD-CoM algorithm also provides the minimum distance information between the continuum manipulator and objects when there is no collision. Such an efficient algorithm is essential for path/trajectory planning of continuum manipulators in real-time.

2021 ◽  
Vol 8 ◽  
Author(s):  
Abbas Tariverdi ◽  
Venkatasubramanian Kalpathy Venkiteswaran ◽  
Michiel Richter ◽  
Ole J. Elle ◽  
Jim Tørresen ◽  
...  

This paper introduces and validates a real-time dynamic predictive model based on a neural network approach for soft continuum manipulators. The presented model provides a real-time prediction framework using neural-network-based strategies and continuum mechanics principles. A time-space integration scheme is employed to discretize the continuous dynamics and decouple the dynamic equations for translation and rotation for each node of a soft continuum manipulator. Then the resulting architecture is used to develop distributed prediction algorithms using recurrent neural networks. The proposed RNN-based parallel predictive scheme does not rely on computationally intensive algorithms; therefore, it is useful in real-time applications. Furthermore, simulations are shown to illustrate the approach performance on soft continuum elastica, and the approach is also validated through an experiment on a magnetically-actuated soft continuum manipulator. The results demonstrate that the presented model can outperform classical modeling approaches such as the Cosserat rod model while also shows possibilities for being used in practice.


1995 ◽  
Vol 389 ◽  
Author(s):  
K. C. Saraswat ◽  
Y. Chen ◽  
L. Degertekin ◽  
B. T. Khuri-Yakub

ABSTRACTA highly flexible Rapid Thermal Multiprocessing (RTM) reactor is described. This flexibility is the result of several new innovations: a lamp system, an acoustic thermometer and a real-time control system. The new lamp has been optimally designed through the use of a “virtual reactor” methodology to obtain the best possible wafer temperature uniformity. It consists of multiple concentric rings composed of light bulbs with horizontal filaments. Each ring is independently and dynamically controlled providing better control over the spatial and temporal optical flux profile resulting in excellent temperature uniformity over a wide range of process conditions. An acoustic thermometer non-invasively allows complete wafer temperature tomography under all process conditions - a critically important measurement never obtained before. For real-time equipment and process control a model based multivariable control system has been developed. Extensive integration of computers and related technology for specification, communication, execution, monitoring, control, and diagnosis demonstrates the programmability of the RTM.


2018 ◽  
Vol 25 (4) ◽  
pp. 1135-1143 ◽  
Author(s):  
Faisal Khan ◽  
Suresh Narayanan ◽  
Roger Sersted ◽  
Nicholas Schwarz ◽  
Alec Sandy

Multi-speckle X-ray photon correlation spectroscopy (XPCS) is a powerful technique for characterizing the dynamic nature of complex materials over a range of time scales. XPCS has been successfully applied to study a wide range of systems. Recent developments in higher-frame-rate detectors, while aiding in the study of faster dynamical processes, creates large amounts of data that require parallel computational techniques to process in near real-time. Here, an implementation of the multi-tau and two-time autocorrelation algorithms using the Hadoop MapReduce framework for distributed computing is presented. The system scales well with regard to the increase in the data size, and has been serving the users of beamline 8-ID-I at the Advanced Photon Source for near real-time autocorrelations for the past five years.


2021 ◽  
Author(s):  
Usman Ahmed ◽  
Zhiheng Zhang ◽  
Ruben Ortega Alfonzo

Abstract Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.


1998 ◽  
Vol 88 (1) ◽  
pp. 95-106 ◽  
Author(s):  
Mitchell Withers ◽  
Richard Aster ◽  
Christopher Young ◽  
Judy Beiriger ◽  
Mark Harris ◽  
...  

Abstract Digital algorithms for robust detection of phase arrivals in the presence of stationary and nonstationary noise have a long history in seismology and have been exploited primarily to reduce the amount of data recorded by data logging systems to manageable levels. In the present era of inexpensive digital storage, however, such algorithms are increasingly being used to flag signal segments in continuously recorded digital data streams for subsequent processing by automatic and/or expert interpretation systems. In the course of our development of an automated, near-real-time, waveform correlation event-detection and location system (WCEDS), we have surveyed the abilities of such algorithms to enhance seismic phase arrivals in teleseismic data streams. Specifically, we have considered envelopes generated by energy transient (STA/LTA), Z-statistic, frequency transient, and polarization algorithms. The WCEDS system requires a set of input data streams that have a smooth, low-amplitude response to background noise and seismic coda and that contain peaks at times corresponding to phase arrivals. The algorithm used to generate these input streams from raw seismograms must perform well under a wide range of source, path, receiver, and noise scenarios. Present computational capabilities allow the application of considerably more robust algorithms than have been historically used in real time. However, highly complex calculations can still be computationally prohibitive for current workstations when the number of data streams become large. While no algorithm was clearly optimal under all source, receiver, path, and noise conditions tested, an STA/LTA algorithm incorporating adaptive window lengths controlled by nonstationary seismogram spectral characteristics was found to provide an output that best met the requirements of a global correlation-based event-detection and location system.


2021 ◽  
pp. 101-107
Author(s):  
Mohammad Alshehri ◽  

Presently, a precise localization and tracking process becomes significant to enable smartphone-assisted navigation to maximize accuracy in the real-time environment. Fingerprint-based localization is the commonly available model for accomplishing effective outcomes. With this motivation, this study focuses on designing efficient smartphone-assisted indoor localization and tracking models using the glowworm swarm optimization (ILT-GSO) algorithm. The ILT-GSO algorithm involves creating a GSO algorithm based on the light-emissive characteristics of glowworms to determine the location. In addition, the Kalman filter is applied to mitigate the estimation process and update the initial position of the glowworms. A wide range of experiments was carried out, and the results are investigated in terms of distinct evaluation metrics. The simulation outcome demonstrated considerable enhancement in the real-time environment and reduced the computational complexity. The ILT-GSO algorithm has resulted in an increased localization performance with minimal error over the recent techniques.


2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


2000 ◽  
Vol 1710 (1) ◽  
pp. 114-121 ◽  
Author(s):  
Sastry Chundury ◽  
Brian Wolshon

It has been recognized that CORSIM (and its constituent program, NETSIM) is one of the most widely used and effective computer programs for the simulation of traffic behavior on urban transportation networks. Its popularity is due in large part to the high level of detail incorporated into its modeling routines. However, the car-following models, used for the simulation of driver behavior in the program, have not been formally calibrated or validated. Since the model has performed well in a wide range of applications for so many years, it has always been assumed to have an implied validity. This study evaluated the NETSIM car-following models by comparing their results with field data. Car-following field data were collected using a new data collection system that incorporates new Global Positioning System and geographic information system technologies to improve the accuracy, ease, speed, and cost-effectiveness of car-following data collection activities. First, vehicle position and speed characteristics were collected under field conditions. Then simulated speeds and distances were based on identical lead vehicle actions using NETSIM car-following equations. Comparisons of simulated and field data were completed using both graphical and statistical methods. Although some differences were evident in the graphical comparisons, the graphs overall indicated a reasonable match between the field and simulated vehicle movements. Three statistical tests, including a goodness-of-fit test, appear to support these subjective conclusions. However, it was also found that definitive statistical conclusions were difficult to draw since no single test was able to compare the sets of speed and distance information on a truly impartial basis.


Sign in / Sign up

Export Citation Format

Share Document