Design-to-Workspace Synthesis of a Cable Robot Used in Legs Training Machine

Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1703-1714
Author(s):  
Houssein Lamine ◽  
Lotfi Romdhane ◽  
Houssem Saafi ◽  
Sami Bennour

SUMMARYThis paper deals with a continuous design task of a planar cable robot used in a gait training machine called the cable-driven legs trainer. The design of cable robots requires satisfying two constraints, that is, tensions in the cables must remain non-negative, and cable interferences should be avoided. The carried design approach is based on interval analysis, which is one of the most efficient methods to obtain certified results. The constraints of non-negative tensions and cable to end-effector interference are solved using interval analysis tools. By means of a dynamic simulation, the reached workspace and the produced wrenches of the cable robot are evaluated as a set of interval vectors. An optimization algorithm is then designed to optimize the cable robot structure for the gait training machine. The robot is designed to produce non-negative tensions in the cables and to avoid collision at all times within the desired workspace and under the required external loads.

2019 ◽  
Vol 9 (13) ◽  
pp. 2627 ◽  
Author(s):  
Michela Goffredo ◽  
Chiara Iacovelli ◽  
Emanuele Russo ◽  
Sanaz Pournajaf ◽  
Chiara Di Blasi ◽  
...  

Gait recovery is one of the main goals of post-stroke rehabilitation and Robot-Assisted Gait Training (RAGT) has shown positive outcomes. However, there is a lack of studies in the literature comparing the effects of different devices. This paper aims to study the effects, in terms of clinical and gait outcomes, of treadmill-based and overground RAGT, compared to conventional gait training in stroke subjects. The results showed a significant improvement of clinical outcomes in both robotic treatments and in conventional therapy. The performance of locomotor tasks was clinically significant in the robotic groups only. The spatio-temporal gait parameters did not reveal any significant difference. Results suggest future multicentre studies on a larger number of subjects.


Author(s):  
Alexandre Lecours ◽  
Cle´ment Gosselin

A reactionless mechanism is one which does not exert any reaction force or moment on its base at all times, for any arbitrary trajectory of the mechanism. This paper addresses the static and dynamic balancing of a two-degree-of-freedom parallel planar mechanism (five-bar mechanism). A simple and effective adaptive balancing method is presented that allows the mechanism to maintain the reactionless condition for a range of payloads. Important proofs concerning the balancing of five-bar mechanisms are also presented. The design of a real mechanism where parallelogram linkages are used to produce pure translations at the end-effector is also presented. Finally, using dynamic simulation software, it is shown that the mechanism is reactionless for arbitrarily chosen trajectories and for a variety of payloads.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianping Shi ◽  
Yuting Mao ◽  
Peishen Li ◽  
Guoping Liu ◽  
Peng Liu ◽  
...  

The inverse kinematics of redundant manipulators is one of the most important and complicated problems in robotics. Simultaneously, it is also the basis for motion control, trajectory planning, and dynamics analysis of redundant manipulators. Taking the minimum pose error of the end-effector as the optimization objective, a fitness function was constructed. Thus, the inverse kinematics problem of the redundant manipulator can be transformed into an equivalent optimization problem, and it can be solved using a swarm intelligence optimization algorithm. Therefore, an improved fruit fly optimization algorithm, namely, the hybrid mutation fruit fly optimization algorithm (HMFOA), was presented in this work for solving the inverse kinematics of a redundant robot manipulator. An olfactory search based on multiple mutation strategies and a visual search based on the dynamic real-time updates were adopted in HMFOA. The former has a good balance between exploration and exploitation, which can effectively solve the premature convergence problem of the fruit fly optimization algorithm (FOA). The latter makes full use of the successful search experience of each fruit fly and can improve the convergence speed of the algorithm. The feasibility and effectiveness of HMFOA were verified by using 8 benchmark functions. Finally, the HMFOA was tested on a 7-degree-of-freedom (7-DOF) manipulator. Then the results were compared with other algorithms such as FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA. The pose error of end-effector corresponding to the optimal inverse solution of HMFOA is 10−14 mm, while the pose errors obtained by FOA, LGMS-FOA, AE-LGMS-FOA, IFOA, and SFOA are 102 mm, 10−1 mm, 10−2 mm, 102 mm, and 102 mm, respectively. The experimental results show that HMFOA can be used to solve the inverse kinematics problem of redundant manipulators effectively.


2019 ◽  
Vol 16 (5) ◽  
pp. 172988141987206 ◽  
Author(s):  
Shimeng Fan ◽  
Xihua Xie ◽  
Xuanyi Zhou

A new improved differential evolution constrained optimization algorithm is proposed to determine the optimum path generation of a rock-drilling manipulator with nine degrees of freedom. This algorithm is developed to minimize the total joint displacement without compromising the pose accuracy of the end-effector. Considering the rule for optimal operation time and smooth joint motion, total joint displacement and minimization of the end-effector pose error are respectively taken as the optimization objective and constraints. In the proposed algorithm, the inverse kinematics solution is computed by self-adaptive mutation differential evolution constrained optimization (SAMDECO) algorithm. Unlike conventional differential evolution (DE) algorithms, in the process of selection operation, the proposed algorithm takes full advantages of the information of excellent infeasible solutions in the contemporary population and scales the contribution of position constraint and orientation constraint. Consequently, the search process is guided to approach the optimal solution from both feasible and infeasible regions, which tremendously improves convergence accuracy and convergence rate. Some contrastive experiments are conducted with the basic self-adaptive mutation differential evoluton (SAMDE) algorithm. The results indicate that the proposed algorithm outperforms the basic SAMDE algorithm in terms of compliance of joints, which raises operation efficiency and plays an important role in engineering services value.


Robotica ◽  
2013 ◽  
Vol 31 (6) ◽  
pp. 887-904 ◽  
Author(s):  
M. H. Korayem ◽  
M. Bamdad ◽  
H. Tourajizadeh ◽  
A. H. Korayem ◽  
R. M. Zehtab ◽  
...  

SUMMARYIn this paper, design, dynamic, and control of the motors of a spatial cable robot are presented considering flexibility of the joints. End-effector control in order to control all six spatial degrees of freedom (DOFs) of the system and motor control in order to control the joints flexibility are proposed here. Corresponding programing of its operation is done by formulating the kinematics and dynamics and also control of the robot. Considering the existence of gearboxes, flexibility of the joints is modeled in the feed-forward term of its controller to achieve better accuracy. A two sequential closed-loop strategy consisting of proportional derivative (PD) for linear actuators in joint space and computed torque method for nonlinear end-effector in Cartesian space is presented for further accuracy. Flexibility is estimated using modeling and simulation by MATLAB and SimDesigner. A prototype has been built and experimental tests have been done to verify the efficiency of the proposed modeling and controller as well as the effect of flexibility of the joints. The ICaSbot (IUST Cable-Suspended robot) is an under-constrained six-DOF parallel robot actuated by the aid of six suspended cables. An experimental test is conducted for the manufactured flexible joint cable robot of ICaSbot and the outputs of sensors are compared with simulation. The efficiency of the proposed schemes is demonstrated.


2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Cyril Quennouelle ◽  
Clément Gosselin

In this paper, the mobility, the kinematic constraints, the pose of the end-effector, and the static constraints that lead to the kinematostatic model of a compliant parallel mechanism are introduced. A formulation is then provided for its instantaneous variation—the quasi-static model. This new model allows the calculation of the variation in the pose as a linear function of the motion of the actuators and the variation in the external loads through two new matrices: the compliant Jacobian matrix and the Cartesian compliance matrix that give a simple and meaningful formulation of the model of the mechanism. Finally, a simple application to a planar four-bar mechanism is presented to illustrate the use of this model and the new possibilities that it opens, notably the study of the kinematics for any range of applied load.


Robotica ◽  
2016 ◽  
Vol 35 (8) ◽  
pp. 1747-1760 ◽  
Author(s):  
MohammadHadi FarzanehKaloorazi ◽  
Mehdi Tale Masouleh ◽  
Stéphane Caro

SUMMARYThis paper proposes an interval-based approach in order to obtain the obstacle-free workspace of parallel mechanisms containing one prismatic actuated joint per limb, which connects the base to the end-effector. This approach is represented through two cases studies, namely a 3-RPR planar parallel mechanism and the so-called 6-DOF Gough–Stewart platform. Three main features of the obstacle-free workspace are taken into account: mechanical stroke of actuators, collision between limbs and obstacles and limb interference. In this paper, a circle(planar case)/spherical(spatial case) shaped obstacle is considered and its mechanical interference with limbs and edges of the end-effector is analyzed. It should be noted that considering a circle/spherical shape would not degrade the generality of the problem, since any kind of obstacle could be replaced by its circumscribed circle/sphere. Two illustrative examples are given to highlight the contributions of the paper.


Sign in / Sign up

Export Citation Format

Share Document