Mechanism of emplacement and crystallisation history of the northern margin and centre of the Galway Granite, western Ireland

Author(s):  
Bernard Elgey Leake

ABSTRACTThe main phase (∼400 Ma) emplacement of the central and northern part of the reversely zoned Galway Granite was incremental by progressive northward marginal dyke injection and stoping of the 470–467 Ma Connemara metagabbro-gneiss country rock. The space was provided by the synchronous ESE-opening, along the strike of the country rocks, of extensional fractures generated successively northward by a releasing bend in the sinistrally moving Skird Rocks Fault or an equivalent Galway Bay Fault. This fault is a prolongation of the Antrim–Galway (a splay off the Highland Boundary Fault) and Southern Upland Faults. The ESE-strike of the spalled-off rocks controlled the resultant ESE-elongated shape of the batholith. The magma pulses (∼5–30 m in thickness) were progressively more fractionated towards the northern margin so that the coarse Porphyritic (or Megacrystic) Granite (GP; technically granodiorite) in the centre was followed outwards by finer grained, drier and more siliceous granite, until the movements opening the fractures ceased and the magma became too viscous to intrude. ‘Out-of-sequence’ pulses of more basic diorite-granodiorite (including the Mingling–Mixing Zone) and late main phase, more acid, coarse but Aphyric Granite, into the centre of the batholith, complicated the outward fractionation scheme. The outward expansion, caused by the intrusions into the centre, caused a foliation and flattening of cognate xenoliths within the partly crystallised northern marginal granite and in the Mingling–Mixing Zone to the south.Late phase (∼380 Ma) central intrusions of the newly-discovered aphyric Shannapheasteen Finegrained Granite (technically granodiorite), the Knock, the Lurgan and the Costello Murvey Granites, all more siliceous and less dense than the GP, were emplaced by pushing up the already solid and jointed GP along marginal faults. This concentration of lighter granites plus compression shown in thrusting, caused overall fault uplift of the Central Block of the Galway batholith so that the originally deepest part of the GP is exposed where there is the most late phase granite. Chemical analyses show the main and late phase magmas, including late dykes, were very similar, with repetition of the same fractionation except that the late phase magmas were drier and more quickly cooled, giving finer grained rocks.

1984 ◽  
Vol 75 (2) ◽  
pp. 113-133 ◽  
Author(s):  
Gordon B. Curry ◽  
B. J. Bluck ◽  
C. J. Burton ◽  
J. K. Ingham ◽  
David J. Siveter ◽  
...  

I. ABSTRACT: Research interest in the Highland Border Complex has been pursued sporadically during the past 150 years. The results and conclusions have emphasised the problems of dealing with a lithologically disparate association which crops out in isolated, fault-bounded slivers along the line of the Highland Boundary fault. For much of the present century, the debate has centred on whether the rocks of the complex have affinities with the Dalradian Supergroup to the N, or are a discrete group. Recent fossil discoveries in a wide variety of Highland Border rocks have confirmed that many are of Ordovician age, and hence cannot have been involved in at least the early Grampian deformational events (now accurately dated as pre-Ordovician) which affect the Dalradian Supergroup. Such palaeontological discoveries form the basis for a viable biostratigraphical synthesis. On a regional scale, it is apparent that the geological history of the Highland Border rocks must be viewed in the context of plate boundary tectonism along the entire northwestern margin of Iapetus during Palaeozoic times.II. ABSTRACT: Silicified articulate brachiopods from the Lower Ordovician (Arenig) Dounans Limestone are extremely rare but the stratigraphically diagnostic generaArchaeorthisSchuchert and Cooper, andOrthidiumHall and Clarke, have been identified. In addition, three specimens with characteristic syntrophiid morphology have been recovered. Inarticulate brachiopods are known from Stonehaven and Bofrishlie Burn near Aberfoyle, and have also been previously recorded from Arran.III. ABSTRACT: Micropalaeontological investigation of the Highland Border Complex has produced a range of microfossils including chitinozoans, coleolids, calcispheres and other more enigmatic objects. The stratigraphical ranges of the species lie almost entirely within the Ordovician and reveal a scatter of ages for different lithologies from the Arenig through to the Caradoc or Ashgill, with a pronounced erosional break between the Llandeilo and the Caradoc.IV. ABSTRACT: A Lower Ordovician (Arenig Series) silicified ostracode fauna from the Highland Border Dounans Limestone at Lime Craig Quarry, Aberfoyle, Central Scotland, represents the earliest record of this group of Crustacea from the British part of the early Palaeozoic ‘North American’ plate.V. ABSTRACT: Palaeontological age determinations for a variety of Highland Border rocks are presented. The data are based on the results of recent prospecting which has demonstrated that macro- and microfossils are present in a much greater range of Highland Border lithologies than previously realised. Data from other studies are also incorporated, as are modern taxonomie re-assessments of older palaeontological discoveries, in a comprehensive survey of Highland Border biostratigraphy. These accumulated data demonstrate that all fossiliferous Highland Border rocks so far discovered are of Ordovician age, with the exception of the Lower Cambrian Leny Limestone.VI. ABSTRACT: The Highland Border Complex consists of at least four rock assemblages: a serpentinite and possibly other ophiolitic rocks of Early or pre-Arenig age; a sequence of limestones and conglomerates of Early Arenig age; a succession of dark shales, cherts, quartz wackes, basic lavas and associated volcanogenic sediments of Llanvirn and ? earlier age; and an assemblage of limestones, breccias, conglomerates and arenites with subordinate shales of Caradoc or Ashgill age. At least three assemblages are divided by unconformities and in theirmost general aspect have similarities with coeval rocks in western Ireland.The Highland Border Complex probably formed N of the Midland Valley arc massif in a marginal sea comparable with the Sunda shelf adjacent to Sumatra–Java. Strike-slip and thrust emplacement of the whole Complex in at least four episodes followed the probable generation of all or part of its rocks by pull-apart mechanisms.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1088
Author(s):  
Georgia Pe-Piper

The magmatic and sub-solidus evolution of calcic amphiboles and Fe–Ti oxides was investigated in the Neoproterozoic Frog Lake pluton, Nova Scotia, Canada, in order to understand the relationship between the history of hydrous magma and the resulting mineralogy. The pluton occurs as sheet-like bodies of hornblende gabbro and hornblendite, with lesser tonalite dykes and granite bodies, interlayed with screens of medium-grade metamorphic country rock. Small, diffuse clots of felsic minerals are present in the gabbro. The subsolidus growth of actinolite occurs in early clinopyroxenes and amphiboles. Ilmenite is the dominant Fe–Ti oxide, as interstitial magmatic crystals. The increase of Mn towards the margin of the ilmenite crystals indicates a gradual increase in oxygen fugacity with time, leading to the precipitation of titanite and ferrohypersthene. The replacement of titanite by ilmenite and ilmenite lamellae in the amphiboles suggests subsequent reducing conditions during the sub-solidus crystallisation. The gabbros in the coeval, but apparently shallower, Jeffers Brook granodiorite laccolith have dominant magnetite and Mg-rich subsolidus amphiboles, which are indicative of high oxygen fugacity. The differences between the two plutons suggest that there was a greater flux of hydrothermal water through the sheet-like architecture of the Frog Lake pluton.


2019 ◽  
Vol 55 (7) ◽  
pp. 1307-1332 ◽  
Author(s):  
Paul Duuring ◽  
João O. S. Santos ◽  
Imogen O. H. Fielding ◽  
Timothy J. Ivanic ◽  
Steffen G. Hagemann ◽  
...  

1987 ◽  
Vol 51 (360) ◽  
pp. 207-215 ◽  
Author(s):  
Ram S. Sharma ◽  
Jane D. Sills ◽  
M. Joshi

AbstractMetanorite dykes intrude the Banded Gneiss Complex at various places in Rajasthan, N.W. India. They show neither chilled margins nor gradational contacts with the country rock amphibolite or granulite facies gneisses. They have ophitic to subophitic texture with strongly zoned subcalcic clinopyroxene and orthopyroxene, olivine and plagioclase, with subsidiary biotite. During slow cooling a series of reaction coronas developed with garnet forming round biotite, ilmenite and orthopyroxene; hornblende round pyroxenes and orthopyroxene, hornblende ± spinel round olivine, which may be totally replaced. It is inferred that the dykes crystallised from a tholeiitic magma at about 1100-1150 °C and were intruded during the waning stages of granulite facies metamorphism. The corona minerals grew at about 650–700 °C. A series of reactions to account for the development of the coronas is proposed using measured mineral compositions. Although these reactions do not balance for individual corona formation, metamorphism was probably isochemical with Ca, Na, K, Ti, Si and H2O only mobile on the scale of a thin section. Si and H2O were possibly mobile on a larger scale.


1981 ◽  
Vol 18 (9) ◽  
pp. 1431-1442 ◽  
Author(s):  
R. D. Dallmeyer ◽  
R. F. Blackwood ◽  
L. Odom

The Dover Fault forms a tectonic boundary between northern portions of the Gander and Avalon Zones of the Newfoundland Appalachians. A systematic geochronological investigation across the mylonitic fault zone has been carried out to clarify the origin and history of tectonic activity along this important Appalachian structure.Zircon fractions from the mylonitic Lockers Bay Granite (Gander Zone) record individually discordant U–Pb dates, but yield a well-defined upper concordia intercept age of 460 ± 20 Ma. Hornblende (1 sample) and biotite (11 samples) from variably mylonitic Gander Zone lithologies (plutonic and metamorphic) adjacent to the fault zone record undisturbed 40Ar/39Ar age spectra with plateau ages of 395 and 365–383 Ma, respectively. Together with field and petrographic characteristics, the new geochronologic data suggest that the Lockers Bay Granite originated as an anatectic melt during high-grade regional metamorphism of the country rock terrane at approximately 460 Ma. The crystal-rich magma was subsequently emplaced into its present position thereby producing local discordance with small-scale structures in host gneisses.Following its emplacement, the Lockers Bay Granite and country rock terrane were maintained at elevated postmetamorphic temperatures for a prolonged interval until they underwent rapid strain during Acadian (Devonian) juxtaposing of the northern Gander and Avalon Zones along the Dover Fault. Sudden Acadian uplift along the fault is suggested because of the rapid cooling of the northern Gander Zone through temperatures required for argon retention in hornblende and biotite. Post-mylonite brecciation may have locally affected argon isotopic systems of phyllitic lithologies adjacent to the fault zone in the study area.


1948 ◽  
Vol 85 (3) ◽  
pp. 149-162 ◽  
Author(s):  
Janet Watson

A large part of Central Sutherland is occupied by an injection complex in which rocks of the Moine Series are associated with much granitic and pegmatitic material. These migmatitic Moinian rocks have reached a higher grade of metamorphism than those which occur outside the injection complex. One feature characteristic of the high-grade migmatites is the presence of sillimanite in many of the pelitic and semi-pelitic rocks. Near the village of Kildonan, ten miles north-west of Helmsdale, sillimanite is not only abundant in the country rock, but occurs also in many pegmatitic and aplitic veins. The field and microscopic evidence shows that this mineral was formed as a result of metasomatic activity at a late stage in the history of the injection complex, when the general metamorphism was already on the wane. The sillimanite seems to have no direct connection with the conditions of regional metamorphism. It was formed under the influence of pegmatitic solutions. In view of the common use of this mineral as an index of the grade of regional metamorphism, it is of interest to describe the evidence on which the above conclusions are based.


Sign in / Sign up

Export Citation Format

Share Document