The rapakivi granites of S Greenland—crustal melting in response to extensional tectonics and magmatic underplating

Author(s):  
P. E. Brown ◽  
T. J. Dempster ◽  
T. N. Harrison ◽  
D. H. W. Hutton

ABSTRACTEarly Proterozoic rapakivi intrusions in S Greenland occur as thick sheets which have ramp–flat geometry and were intruded along the median planes of active ductile extensional shear zones. These shear zones and their intrusions were linked via transfer zones in a major three-dimensional framework. At high structural levels (c. 6 km) the rapakivi intrusions developed thermal aureoles which overprint the regional assemblages, whereas at deeper levels in the regional structure they are contemporaneous with regional metamorphism. Thermobarometry on the regional and contact assemblages indicates low pressure granulite facies conditions (200–400 MPa, 650°-800°C) suggesting very high thermal gradients. The rapakivi suite and associated norites have low initial 87Sr/86Sr together with positive εNd values, indicating the involvement of predominantly young crust and/or mantle component in the generation of the igneous suite. It is considered that the voluminous norites are closely related to the mafic melts which underplated the juvenile crust to trigger the generation of the monzonitic rapakivi suite. Taken together, the data are consistent with a model of Proterozoic lithospheric extension, thinning of relatively juvenile continental crust and compression of mantle isotherms, resulting in high crustal heat flow, mafic underplating, and crustal melting with emplacement of magmas along a linked network of extensional shear zones.

1992 ◽  
Vol 29 (4) ◽  
pp. 737-745 ◽  
Author(s):  
Jacques Martignole

High-grade (granulite-facies) terranes are brought to the surface by a combination of uplift and erosion (exhumation). The reported mechanisms and durations of exhumation are variable and depend partly on the mode of formation of a given high-grade terrane. In this paper, we consider the case of granulite-facies conditions that are attained (i) in juvenile crust, in the roots of magmatic arcs (e.g., Kohistan, Fiordland), (ii) around deep-seated high-temperature plutonic complexes, and (iii) in the lower parts of thickened continental crust. In the case of the roots of magmatic arcs, Phanerozoic examples suggest that they are exhumed along shallow-dipping contraction faults or shear zones that developed during continental obduction in a convergent tectonic regime. This process is not fundamentally different from processes leading to the exhumation of high-pressure (blueschist, eclogite) terranes. In contrast, deep-seated high-temperature plutonic complexes are thermostructural domes, analogous to the lower levels of core complexes, which may also have contributed to the uprise of high-grade terranes. Such domes should be sought for around anorthositic or mafic plutons, where their ascent may also have been favoured by continental extension. These modes of exhumation are compatible with a monocyclic evolution. However, many high-grade terranes show evidence of a polycyclic evolution and, in such cases, the nature of the thermal perturbation responsible for granulite-facies metamorphism is still debated. Thermal modelling based on heat conduction in collision orogens shows that granulites cannot form at mid-cristal levels, namely those exposed after isostatically driven denudation. Thus, magmatic underplating and crustal extension have been suggested as causes of steepened geotherms. Underplating (or intraplating) supplies the heat and thickens the crust from below. Postcollisional extension has also been considered as a mechanism providing a heat pulse emanating from the asthenosphere, probably after the "detachment" of a relatively cold thermal boundary layer. Finally, isolated crustal-scale intracratonic thrusting may favour the rise of intermediate to lower crustal wedges (e.g., the Kapuskasing wedge, uplifted prior to the trans-Hudson collision).


1977 ◽  
Vol 14 (4) ◽  
pp. 886-898 ◽  
Author(s):  
Herwart Helmstaedt ◽  
John M. Allen

Five gabbros and three peridotites from hole 334 were examined for postmagmatic deformational changes and metamorphic recrystallization. The condition of the gabbros ranges from unaltered, to slightly altered and deformed, to highly deformed and metamorphosed, the latter type being confined to narrow shear zones. Petrofabric studies and electron microprobe analyses of mineral phases of a foliated metagabbronorite from such a shear zone suggest the following post-magmatic history: (1) strong plastic deformation and anhydrous synkinematic recrystallization of igneous plagioclase (An90−85), clinopyroxene, and orthopyroxene to the granulite facies mineral assemblage of strongly zoned plagioclase (An80−65), diopside, and orthopyroxene; relics of the igneous minerals survived as highly strained porphyroclasts; (2) synkinematic growth of amphibole consisting of a patchy intergrowth of tremolite and actinolitic hornblende; the amphibole fabric is compatible with strain estimates by the centre-point method; (3) mainly static hydrous alteration — growth of (?) vermiculite and sericitization.Penetrative deformation probably initiated shortly after intrusion and took place during cooling of the rocks from approximately 800 °C to 300 °C. The bulk of the strain in the metagabbronorite of the shear zone predates the serpentinization of the peridotites. Many textural and fabric features in alpine-type gabbro–peridotite complexes that are ascribed to regional metamorphism and deformation during orogenic emplacement may originate shortly after intrusion near or at an accreting plate margin.


1998 ◽  
Vol 35 (9) ◽  
pp. 1070-1087 ◽  
Author(s):  
Scott G Digel ◽  
Edward D Ghent ◽  
Sharon D Carr ◽  
Philip S Simony

Mapping of isograds related to regional amphibolite-facies metamorphism constrains a three-dimensional model of isogradic surfaces near Mount Cheadle in the northern Shuswap metamorphic complex (lat. 52°20'N, long. 119°05'W). Kyanite and sillimanite coexist in a lens-shaped zone, bounded by the kyanite-out and sillimanite-in isogradic surfaces, that is 50 km long, up to 10 km thick, and up to 20 km wide. Textural equilibrium, simple regular geometry of isogradic surfaces, and simple mineral assemblages suggest that metamorphism occurred at P-T conditions near those of the kyanite-sillimanite equilibrium curve. Reconstruction of isotherms in the kyanite + sillimanite zone suggests that the metamorphic field gradient was about 14°C·km-1. A 5 km thick, staurolite-free kyanite zone adjacent to the sillimanite-in isograd suggests a pressure range of about 1.5 kbar (1 kbar = 100 MPa) for Bathozone 5 of D.M. Carmichael. Regional metamorphism was Early Cretaceous (monazite U-Pb geochronology) with quenching in the Late Cretaceous, possibly caused by motion on the basal thrust beneath the Malton complex. A younger generation of sillimanite grew in discrete outcrop-scale ductile shear zones, veins, and pods in a north-south-oriented belt (50 km by 20 km). U-Pb dates on zircon, monazite, and titanite indicate an age of the sillimanite overprint of 65-59 Ma. It may have resulted from the influx of hot fluids associated with widespread Late Cretaceous and Paleocene leucogranite emplacement concomitant with extensional faulting.


Author(s):  
Brandon Caswell ◽  
J.A. Gilotti ◽  
Laura E. Webb ◽  
William C. McClelland ◽  
Karolina Kośmińska ◽  
...  

Paleoproterozoic gneisses of the Ellesmere–Devon crystalline terrane on southeast Ellesmere Island are deformed by m-scale, E-striking mylonite zones. The shear zones commonly offset pegmatitic dikes and represent the last episode of ductile deformation. Samples were dated by the <sup>40</sup>Ar/<sup>39</sup>Ar step-heating method to put an upper limit on the time of deformation. Biotite from one tonalitic protolith and five shear zones give geologically meaningful results. Clusters of unoriented biotite grains pseudomorph granulite-facies orthopyroxene in some of the weakly deformed gneisses, whereas the shape preferred orientation of biotite defines the mylonitic fabric. The intrusive age of the tonalitic protolith is 1958 ± 12 Ma, based on previous U-Pb dating of zircon. 40Ar/39Ar analysis of biotite from the same sample gave a plateau age of 1929 ± 23 Ma, which is interpreted as cooling from regional granulite facies metamorphism. Three nearby samples of mylonitic tonalite have <sup>40</sup>Ar/<sup>39</sup>Ar ages that range from ≈1870–1840 Ma. Biotite from two granitic mylonites over 80 km away return high-resolution Ar spectra in the same range, implying that widespread ductile shearing occurred between ≈1870–1840 Ma, or ≈90 m.y. after cooling from regional metamorphism. Although the 2.0–1.9 Ga gneisses of southeast Ellesmere Island correlate with the Inglefield Mobile Belt in North-West Greenland and the Thelon Tectonic Zone, the late shear zones are superimposed on that juvenile arc long after the 1.97 Ga Thelon orogeny.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xu Kong ◽  
Xueyuan Qi ◽  
Wentian Mi ◽  
Xiaoxin Dong

We report zircon U–Pb ages and Lu-Hf isotopic data from two sample of the retrograded eclogite in the Chicheng area. Two groups of the metamorphic zircons from the Chicheng retrograded eclogite were identified: group one shows characteristics of depletion in LREE and flat in HREE curves and exhibit no significant Eu anomaly, and this may imply that they may form under eclogite facies metamorphic condition; group two is rich in HREE and shows slight negative Eu anomaly indicated that they may form under amphibolite facies metamorphic condition. Zircon Lu-Hf isotopic of εHf from the Chicheng eclogite has larger span range from 6.0 to 18.0, which suggests that the magma of the eclogite protolith may be mixed with partial crustal components. The peak eclogite facies metamorphism of Chicheng eclogite may occur at 348.5–344.2 Ma and its retrograde metamorphism of amphibolite fancies may occur at ca. 325.0 Ma. The Hongqiyingzi Complex may experience multistage metamorphic events mainly including Late Archean (2494–2448 Ma), Late Paleoproterozoic (1900–1734 Ma, peak age = 1824.6 Ma), and Phanerozoic (495–234 Ma, peak age = 323.7 Ma). Thus, the metamorphic event (348.5–325 Ma) of the Chicheng eclogite is in accordance with the Phanerozoic metamorphic event of the Hongqiyingzi Complex. The eclogite facies metamorphic age of the eclogite is in accordance with the metamorphism (granulite facies or amphibolite facies) of its surrounding rocks, which implied that the tectonic subduction and exhumation of the retrograded eclogite may cause the regional metamorphism of garnet biotite plagioclase gneiss.


1979 ◽  
Vol 89 ◽  
pp. 9-18
Author(s):  
D Bridgwater ◽  
J.S Myers

The Nagssugtoqidian mobile belt is a 240 km wide zone of deformation and plutonic activity which cuts across the Archaean craton of East Greenland. The belt was established 2600 m.y. ago by the formation of vertical E-W shear zones and the syntectonic intrusion of basic dykes. Tectonic activity along the E-W shear zones was followed by the emplacement of tonalitic intrusions, the Blokken gneisses, 2350 m.y. ago in the central parts of the mobile belt. The emplacement of the Blokken gneisses was accompanied and followed by further emplacement of basic dykes. These are synplutonic in the centre of the mobile belt but are emplaced into more rigid crust in the marginal areas of the belt and in the Archaean craton to the north and south. During a second major tectonic and thermal episode circa 1900 m.y. ago, the region was deformed by thrusting from the north. In the southem part of the mobile belt the earlier steep shear zones are cut by shear zones dipping gently northwards in which rocks are downgraded to greenschist facies. The grade of metamorphism increases northwards and shear zones are replaced by open folds with axial surfaces which dip gently northwards. The increasing ductility in the centre of and northem part of the belt is associated with the intrusion of charnockitic plutons and their granulite facies aureoles. Regional uplift occurred before the intrusion of high level post-tectonic plutons of diorite and granite 1550 m.y. ago.


2020 ◽  
Vol 133 (1-2) ◽  
pp. 3-18 ◽  
Author(s):  
Suoya Fan ◽  
Michael A. Murphy

Abstract In this study, we use published geologic maps and cross-sections to construct a three-dimensional geologic model of major shear zones that make up the Himalayan orogenic wedge. The model incorporates microseismicity, megathrust coupling, and various derivatives of the topography to address several questions regarding observed crustal strain patterns and how they are expressed in the landscape. These questions include: (1) How does vertical thickening vary along strike of the orogen? (2) What is the role of oblique convergence in contributing to along-strike thickness variations and the style of deformation? (3) How do variations in the coupling along the megathrust affect the overlying structural style? (4) Do lateral ramps exist along the megathrust? (5) What structural styles underlie and are possibly responsible for the generation of high-elevation, low-relief landscapes? Our model shows that the orogenic core of the western and central Himalaya displays significant along-strike variation in its thickness, from ∼25–26 km in the western Himalaya to ∼34–42 km in the central Himalaya. The thickness of the orogenic core changes abruptly across the western bounding shear zone of the Gurla Mandhata metamorphic core complex, demonstrating a change in the style of strain there. Pressure-temperature-time results indicate that the thickness of the orogenic core at 37 Ma is 17 km. Assuming this is constant along strike from 81°E to 85°E indicates that, the western and central Nepal Himalaya have been thickened by 0.5 and 1–1.5 times, respectively. West of Gurla Mandhata the orogenic core is significantly thinner and underlies a large 11,000 km2 Neogene basin (Zhada). A broad, thick orogenic core associated with thrust duplexing is collocated with an 8500 km2 high-elevation, low-relief surface in the Mugu-Dolpa region of west Nepal. We propose that these results can be explained by oblique convergence along a megathrust with an along-strike and down-dip heterogeneous coupling pattern influenced by frontal and oblique ramps along the megathrust.


1991 ◽  
Vol 128 (4) ◽  
pp. 307-318 ◽  
Author(s):  
C. W. Passchier ◽  
R. F. Bekendam ◽  
J. D. Hoek ◽  
P. G. H. M. Dirks ◽  
H. de Boorder

AbstractThe presence of polyphase shear zones transected by several suites of dolerite dykes in Archaean basement of the Vestfold Hills, East Antarctica, allows a detailed reconstruction of the local structural evolution. Archaean and early Proterozoic deformation at granulite facies conditions was followed by two phases of dolerite intrusion and mylonite generation in strike-slip zones at amphibolite facies conditions. A subsequent middle Proterozoic phase of brittle normal faulting led to the development of pseudotachylite, predating intrusion of the major swarm of dolerite dykes around 1250 Ma. During the later stages and following this event, pseudotachylite veins were reactivated as ductile, mylonitic thrusts under prograde conditions, culminating in amphibolite facies metamorphism around 1000–1100 Ma. This is possibly part of a large-scale tectonic event during which the Vestfold block was overthrust from the south. In a final phase of strike-slip deformation, several pulses of pseudotachylite-generating brittle faulting alternated with ductile reactivation of pseudotachylite.


1995 ◽  
Vol 32 (9) ◽  
pp. 1292-1302
Author(s):  
Terence M. Gordon ◽  
Donald C. Lawton

The Daly Bay Complex is one of several metamorphic complexes making up the Aqxarneq gneisses north of Chesterfield Inlet in central District of Keewatin. Granulite-facies metamorphism (0.55 GPa, 750 °C) and ductile deformation have affected all of the rocks in the complex. A 1–15 km wide, inward-dipping, ductile shear zone forms the outer part of the complex and contains strongly deformed equivalents of rocks in the core. Mesoscopic structures and metamorphic mineralogy suggest the Daly Bay Complex was emplaced into the surrounding lower grade rocks by northward-directed thrusting. A three-dimensional gravity model, constrained by structural observations and 1091 surface density measurements, shows that the relatively dense rocks of the complex form a spoon-shaped structure with a long axis trending northwest–southeast. It is approximately 50 km by 120 km in lateral extent and reaches a maximum depth of about 9 km. The thin-skinned geometry of the Daly Bay Complex supports the notion that the crust in central Keewatin between the Daly Bay Complex and Baker Lake comprises a series of undulating imbricated gneiss sheets of middle and lower crustal material, which were juxtaposed by a major tectonic event sometime between 2.5 and 1.9 Ga. The interpreted basal décollement is comparable to seismic features in many orogens, and a predictable consequence of increased ductility with depth in the crust.


Sign in / Sign up

Export Citation Format

Share Document