Use of straw and cellulosic wastes and methods of improving their value

1980 ◽  
Vol 3 ◽  
pp. 25-31
Author(s):  
J. F. D. Greenhalgh

The most widely-quoted estimates of straw supplies and usage in England and Wales are those of a working party of the National Farmers Union (1973). They assumed the yield of straw to be 2.8 t/ha, and hence 9.3 Mt from 3.4 M ha of cereals in 1972. (The same yield from 3.7 M ha of cereals in the UK would give 10.4 Mt.) Of the 9.3 Mt, 37% was estimated to be burned in the field or ploughed in, 36% used for bedding, 15% used for feed, and 12% used for other purposes. The figure of 2.4 t/ha (1 t/acre) may well be too low. Short (1974) found straw yields at four Experimental Husbandry Farms over several years to be as follows (t/ha): winter wheat 3.71, spring wheat 4.68, spring barley 2.71, and spring oats 4.54. Wood (1974) surveyed wheat crops in Oxfordshire in 1973 and found yields of 3.7 t/ha. The total quantity of straw available is therefore likely to be considerably in excess of 9.3 Mt and could if necessary be increased further by cutting at a lower level. The accuracy of the National Farmers Union estimate of 0.15 × 10.4 = 1.6 Mt used for animal feeding is also questionable, but this amount would — if it contained 6.5 MJ metabolizable energy (ME)/kg dry matter (DM) — be sufficient to provide only about 7% of the maintenance requirements of all cattle in Britain. On a larger scale, Balch (1977) has calculated that if all the straw grown in Europe were improved by chemical treatment it could provide 80 to 90% of the maintenance requirements of Europe's ruminant livestock. World estimates for the production of straw and other fibrous wastes are given by Owen (1976).

1980 ◽  
Vol 95 (3) ◽  
pp. 583-595 ◽  
Author(s):  
A. Penny ◽  
F. V. Widdowson

SUMMARYAn experiment at Rothamsted during 1958–67 measured effects on yield, on K uptake and on soil K of applying all combinations of 38, 75 and 113 kg N and 0, 31 and 62 kg K/ha per cut to grass leys, which were cut and removed. Soil K was depleted most where most N and least K were given. Annual applications of 0, 33 and 66 kg P/ha were also tested; soil P was not depleted. The grass was then ploughed.In 1968, residual effects were measured by spring wheat. In 1969 and in 1970 104 kg/ha of fresh K was applied on half of each plot; potatoes (1969) and spring wheat (1970) valued residual and fresh effects of K.In 1971 potatoes tested 0, 104 and 208 kg/ha of fresh K, cumulatively with the three amounts given to the grass and also extra K (104 kg/ha) on half-plots, cumulatively with that given in 1969 and 1970. In 1972 winter wheat, and in 1974 and 1975 spring barley, measured residues of all treatments previously applied (the site was fallowed in 1973).Finally, in 1976, potatoes tested 0, 156 and 312 kg/ha of fresh K on whole plots, cumulatively with the previous dressings of K, and also 156 kg/ha of extra K on half-plots, again cumulatively. All these test crops were given basal N.Yields and K contents of wheat at ear emergence and yields of wheat grain were largest after grass given 38 kg N and 62 kg K/ha per cut, because here soil K depletion was least. Wheat grain yields benefited consistently from fresh K. K content of the wheat at ear emergence was a good indicator of the need for K, but K content of grain was not, because it was unaltered by K fertilizer. Barley was a poor test crop for K, because yields of grain were little affected by previous treatments.Percentage K in potato leaves (in July in 1969 and 1971, in August in 1976) and yield of tubers were well correlated. Largest yields in 1969, 1971 and 1976 came where the leaves contained 3·43, 3·76 and 2·82% K, respectively, i.e. from soil containing most exchangeable K, plus most fresh K. There was no indication that maximum yields had been obtained, so the largest amounts (kg/ha) of fresh K tested (104 in 1969, 312 in 1971 and 468 in 1976) were insufficient to counteract depletion of soil K by the grass. Because the grass did not deplete soil P, the test crops benefited only little from either residual or fresh P.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 51-55 ◽  
Author(s):  
T. C. Paulitz ◽  
J. D. Smith ◽  
K. K. Kidwell

Rhizoctonia oryzae (teleomorph = Waitea circinata) causes sheath spot of rice and root rot of wheat and barley. R. oryzae commonly is isolated from barley, wheat, and pea plants in eastern Washington and Idaho. Eight representative isolates were tested for virulence on spring barley (Hordeum vulgare cv. Baronesse), soft white winter wheat (Triticum aestivum cv. Madsen), and hard red spring wheat (cv. Scarlet) planted in natural soil in the greenhouse and maintained at 16°C. All isolates caused significant reduction of emergence in barley, but only seven of the eight isolates and one of the eight isolates reduced emergence of winter wheat and spring wheat, respectively. All isolates caused significant stunting and reduction in the number of seminal roots, root length, and number of root tips on wheat and barley. Some isolates also reduced the frequency of fine secondary roots, resulting in a reduction of the average root diameter. Spring barley was more susceptible to R. oryzae than winter or spring wheat. The main effects of both cultivar and isolate were significant, and there was a significant isolate-cultivar interaction. R. oryzae isolate 80042 was the most virulent on barley, whereas R. oryzae isolate 801387 was the most virulent on wheat. The two isolates from pea were intermediate in virulence on wheat and barley. When screening germ plasm for potential resistance, isolates exhibiting the maximum virulence for each host should be used.


1989 ◽  
Vol 113 (2) ◽  
pp. 149-163 ◽  
Author(s):  
M. F. Fuller ◽  
A. Cadenhead ◽  
D. S. Brown ◽  
A. C. Brewer ◽  
M. Carver ◽  
...  

SUMMARYEstimates were made of the dry matter (DM) yield and N content of cereal grains harvested from trial plots. They included 236 combinations of variety and treatment, with 13 varieties of winter wheat grown under six husbandry regimes, 14 varieties of spring barley under three husbandry regimes and ten varieties of winter barley under 11 husbandry regimes. The husbandry included timing and rate of fertilizer application, use of growth regulator and fungicide, and seed rate.For all three cereals, there were highly significant positive associations between grain N content (g/kg DM) and grain DM yield (t/ha) when individual varieties were grown under different conditions. The regression coefficients were: winter wheat 2·28, spring barley 0·74 and winter barley 1·06. When varieties were compared under constant husbandry, the association between N content and yield was negative; the regression coefficients were: winter wheat – 1·53, spring barley –1·14 and winter barley –1·21.The contents of lysine, threonine, isoleucine and valine were examined in 19 samples of winter wheat, 19 of spring barley and 21 of winter barley. Each cereal type included a comparison of varieties under one husbandry regime and a comparison of husbandry regimes in one variety.The amino acid composition of wheat protein changed little with either variety or treatment. In spring and winter barley, lysine concentration in grain protein (g/16 g N) decreased with increases in grain N which arose from additional fertilizer N. There were similar decreases in threonine, isoleucine and valine in winter barley, but varietal differences in grain N were not associated with significant changes in the amino acid composition of grain protein.The nutritive values of spring barley, winter barley and winter wheat were compared in digestion and N balance studies in growing pigs. A subset often samples was examined which included, for each cereal type, high- and low-protein varieties, each (except for spring barley) grown with high or low rates of applied fertilizer N.Apparent digestibility of dry matter measured at the terminal ileum was similar (0·67–0·70) in all three types of cereal but there was a tendency for the DM of high-protein varieties to be digested better than that of low-protein varieties. Over the whole digestive tract, the apparent digestibility of the DM of wheat was higher (0·83) than that of barley (0·75).The apparent digestion of the starch of all samples was virtually complete (0·98) by the end of the ileum; the remainder was digested in the large intestine.The apparent digestibility of N up to the terminal ileum was significantly higher for wheat than for barley, and significantly higher in high- than in low-protein varieties. Over the whole gastro-intestinal tract, the difference between the cereals was even larger; a greater proportion of wheat N than of barley N was digested in the large intestine.The rate of N fertilizer application did not significantly affect the apparent digestibility of any amino acid but there were significant differences amongst the cereal types in the apparent digestibility of seven amino acids. The amino acids in high-protein varieties were, on average, 6 % more digestible than those in low-protein varieties.When allowance was made for the endogenous flow of amino acids, some of the differences between cereals and between high- and low-protein varieties disappeared but some significant differences remained.The biological value (BV) of wheat protein (0·43) was significantly lower than that of barley protein (mean 0·57). When pigs were fed wheat as the sole protein source, the higher N content of wheat compensated for its lower BV. There were no significant differences in the rates of N retention between pigs fed on wheat or barley.


1988 ◽  
Vol 46 (1) ◽  
pp. 29-34 ◽  
Author(s):  
E. R. Ørskov ◽  
G. W. Reid ◽  
M. Kay

ABSTRACTFive different straws consisting of two varieties of winter barley, two varieties of spring barley and one variety of winter wheat were chosen due to differences in degradation characteristics determined by using nylon bags incubated in the rumen of cattle and describing the straw using the equation: p = a + b (1 – e–ct). To increase variation in degradability, batches of the same straws were also treated with anhydrous ammonia in a sealed oven.The straws were subsequently offered ad libitum to groups of steers given a daily supplement of 1·5 kg concentrate and untreated straws were supplemented with urea. The dry-matter intake (DMI) of the straws varied from 3·4 to 5·7 kg/day, the digestible DMI from 1·4 to 3·5 kg/day and growth rate from 106 to 608 g/day.By using multiple regression of a, b, c from the exponential equations characterizing degradability of the straw, the correlation coefficients with DMI, digestible DMI and growth rate were 0·88, 0·96 and 0·95 respectively.


1959 ◽  
Vol 53 (3) ◽  
pp. 333-338 ◽  
Author(s):  
H. R. Jameson

The results show that liquid fertilizers generally gave lower yields of dry matter than conventional solid fertilizers in four experiments on grassland. In seven trials, on autumn wheat, spring wheat, sugar beet and kale, the efficiencies of the two forms of fertilizer were similar.Liquid fertilizers containing ammonia must be injected into the soil and this needs special equipment, more complicated, particularly where anhydrous ammonia is to be used, than the distributors used for solid fertilizers. Running the injector over established grassland sometimes resulted in considerable damage to the sward. When used to top-dress winter wheat across the line of drilling some plants were killed.


2013 ◽  
Vol 27 (1) ◽  
pp. 89-95 ◽  
Author(s):  
T. Zając ◽  
A. Oleksy ◽  
A. Stokłosa ◽  
A. Klimek-Kopyra ◽  
J. Macuda

Abstract The study aimed at evaluating the distribution of mass in the straw of cereal species and also at assessing the straw yield and its losses resulting from the amount of the stubble left in the field. It was found empirically that the wheat culms are composed of five internodes, and in barley, triticale and oats of six. The highest straw mass per 1 cm was found in the second internode in both forms of wheat and winter triticale, whereas barley and oats gathered the highest weight in the first internode. In the southern part of Silesia species and forms of cereals differed in the straw yield, which can be arranged as follows, from the highest: winter wheat > spring wheat, winter triticale, winter barley, and oats > spring barley. Due to the specific distribution of dry matter in each of internodes of both wheat forms - winter and spring, they loose less stubble mass (22 and 24%, respectively), comparing to other cereals, especially spring barley, which loose 31% yield of straw in the stubble of 15 cm height.


2019 ◽  
Vol 10 (1) ◽  
pp. 107-121 ◽  
Author(s):  
J. Salonen ◽  
E. Ketoja

Abstract Adoption of reduced tillage in organic cropping has been slow, partly due to concerns about increasing weed infestation. Undersown cover crops (CCs) are considered to be a feasible option for weed management but their potential for weed suppression is insufficiently investigated in low-till organic cropping. The possibilities to reduce primary tillage by introducing CCs to maintain weed infestation at a level that does not substantially jeopardize crop yield were studied in a field experiment in southern Finland during 2015–2017. Eight different CC mixtures were undersown in cereals and the response in weed occurrence was consecutively assessed in spring barley, winter wheat, and finally, as a subsequent effect, in spring wheat. Growth of CCs was too slow to prevent the flush of early emerging weeds in spring barley whereas in winter wheat, CCs succeeded in hindering the growth of weeds. However, CCs could not prevent the increase of perennial weeds in a reduced tillage system in which the early growth of spring wheat was retarded in cool 2017. Consequently, after 2 years of reduced tillage, weed biomass was about 2.6 times higher and spring wheat yield was 30% lower than in plowed plots, respectively. No major differences in weed control efficacy among CC treatments were evident. A grain yield benefit was recorded after repeated use of leguminous CCs. The need for long-term field studies remains of particular interest regarding post-harvest performance and influence of CCs on perennial weeds before the inversion tillage.


1970 ◽  
Vol 75 (3) ◽  
pp. 553-557 ◽  
Author(s):  
R. S. Jessop ◽  
J. D. Ivins

SUMMARYExperiments to study the effect of date of sowing at two centres in each of 3 years, 1967–9, are described and the results discussed. The earliest sowing date (early March) gave the highest yield of spring barley at both centres and of spring wheat at Sutton Bonington, but at Boxworth in 1967 and 1969 later sowing (early or late April) gave higher yields of grain, which were attributable mainly to increased grain numbers per ear. It is argued that in 1968 poor weather conditions in July and August resulted in very low 1000 grain weights, and although grain numbers were again higher from late sowing at Boxworth this treatment gave the lowest yields because of poorly filled grain. The date of sowing also affected yields of total dry matter, ratios of grain to straw, leaf-area indices, numbers of grains per ear and 1000 grain weights.


Author(s):  
А. Kh. Kulikova ◽  
◽  
G. V. Saidyasheva ◽  

Research on the effectiveness biomodified mineral fertilizers were carried out on the basis of Ulyanovsk SRIA – SamSC RAS branch during the rotation grain fallow five fields crop rotation: pure steam – winter wheat – spring wheat – barley – oats in 2013-2018. The field experiment scheme included options (except control): with the introduction of biologics BisolbiFit (introduction with seeds that were treated before sowing), azofoski N15P15K15, in pure form, modified with biopreparation azofoski in the same dose N15P15K15, half a dose of modified azofoski (N7, 5 P7, 5 K7, 5). The effectiveness of fertilizers and biopreparations in crop cultivation was studied on three backgrounds: natural (control), ammonium nitrate at a dose of 40 kg ai/ha (NH4NO3), and modified ammonium nitrate at a dose of 20 kg DW/ha. It was established that modification of azofoski with Bisolbifit biopreparation can significantly increase the coefficients of use of elements from it by plants. The latter allows to reduce the dose of fertilizer, without reducing the productivity of cultivated crops, twice. Long-term cultivation of crops using only mineral fertilizers and biological products led to a relative decrease in the humus content in the soil and its acidification. For 6 years, the content of humus in the arable layer of leached chernozem decreased by 0.12 %, and the acidity of the soil solution increased by 0.5 pHKCI units. In the conditions of the Volga forest-steppe, when cultivated on chernozems, the highest-yielding winter wheat is (up to 4.00 t / ha or more, in our experiments 3.88-4.80 t / ha). The average yield of spring wheat was 2.68-3.31 t / ha, spring barley 2.67-3.21 t / ha, oats 2.15-2.71 t / ha. The highest productivity of crop rotation was observed against a background with modified ammonium nitrate at a dose of 20 kg ai/ha (½NH4NO3) when applying modified azofoski (N15P15K15). Grain harvest for 2013-2018 in this variant was 13.36 t / ha, exceeding the control variant on this background by 1.31 t / ha.


1957 ◽  
Vol 49 (3) ◽  
pp. 319-328 ◽  
Author(s):  
E. R. Bullen ◽  
W. J. Lessells

This paper provides a general review of the effect of nitrogenous fertilizers on the yields of wheat, barley and oats. The results of 270 experiments carried out during the last decade in England and Wales have been examined.With the exceptions noted below wheat and barley crops have produced a grain response of 3·0–3·5 cwt./acre to a standard dressing of 0·25 cwt. N/acre; this agrees well with earlier results obtained by Crowther & Yates. The widely grown winter wheat varieties, Hybrid 46, Cappelle Desprez, Bersée, Nord Desprez and Atle each produced an average response of more than 4·0 cwt./acre to the standard dressing. Of the spring barleys, Kenia, Proctor and Herta are also of greater than average responsiveness. The average response of spring oats to the standard dressing was only 1·2 cwt./acre.The number of experiments is insufficient to allow precise conclusions to be drawn on the effect of autumn dressings, but the evidence suggests that in the drier eastern counties autumn nitrogen may give as good a response as the equivalent spring application. Small dressings of nitrogen provide equal responses whether applied early or late in spring; larger applications need to be applied early in spring (March or April) to obtain the highest yields. There is no evidence that divided dressings are more efficient than a single dressing applied in early spring.For highly responsive varieties of winter wheat and spring barley mentioned above a dressing of 0·6–0·7 cwt. N/acre is recommended, producing a net return of approximately £10 per acre. For other varieties of winter wheat, and for spring wheat and spring barley, the recommended dressing of 0·5 cwt. N/acre produces a net return of about £5 per acre.


Sign in / Sign up

Export Citation Format

Share Document