Woody plant seedling distribution under invasive Lantana camara thickets in a dry-forest plot in Mudumalai, southern India

2011 ◽  
Vol 27 (4) ◽  
pp. 365-373 ◽  
Author(s):  
Geetha Ramaswami ◽  
R. Sukumar

Abstract:Lantana camara, a shrub of Central and South American origin, has become invasive across dry forests worldwide. The effect of the thicket-forming habit of L. camara as a dispersal and recruitment barrier in a community of native woody seedlings was examined in a 50-ha permanent plot located in the seasonally dry forest of Mudumalai, southern India. Sixty 100-m2 plots were enumerated for native woody seedlings between 10–100 cm in height. Of these, 30 plots had no L. camara thickets, while the other 30 had dense thickets. The frequency of occurrence and abundance of seedlings were modelled as a function of dispersal mode (mammal, bird or mechanical) and affinities to forest habitats (dry forest, moist forest or ubiquitous) as well as presence or absence of dense L. camara thickets. Furthermore, frequency of occurrence and abundance of individual species were also compared between thickets and no L. camara. At the community level, L. camara density, dispersal mode and forest habitat affinities of species determined both frequency of occurrence and abundance of seedlings, with the abundance of dry-forest mammal-dispersed species and ubiquitous mechanically dispersed species being significantly lower under L. camara thickets. Phyllanthus emblica and Kydia calycina were found to be significantly less abundant under L. camara, whereas most other species were not affected by the presence of thickets. It was inferred that, by affecting the establishment of native tree seedlings, L. camara thickets could eventually alter the community composition of such forests.

Author(s):  
Ernesto I. Badano ◽  
Francisco A. Guerra-Coss ◽  
Erik J. Sánchez-Montes de Oca ◽  
Carlos I. Briones-Herrera ◽  
Sandra M. Gelviz-Gelvez

Background and Aims: Tree recruitment in seasonally dry forests occurs during the rainy season. However, higher temperatures and reduced rainfalls are expected in these ecosystems because of climate change. These changes could induce drought conditions during the rainy season and affect tree recruitment. Plants subjected to thermal or water stress often display morphological and physiological shifts addressed to prioritize their survival. If recently emerged tree seedlings display these responses, this could improve their development during the rainy season and increase their survival chances. Our aim was to test whether recently emerged oak seedlings display these responses.Methods: We performed a field experiment with Quercus ariifolia, an oak species endemic to seasonally dry forests of central Mexico. At the beginning of the rainy season (September 2016), we sowed acorns of this species in control plots under the current climate and plots in which climate change was simulated by increasing temperature and reducing rainfall (CCS plots). Seedling emergence and survival were monitored every seven days during the rainy season (until January 2017). At the end of the experiment, we measured several functional traits on surviving seedlings and compared them between controls and CCS plots.Key results: Higher temperature and lower rainfall generated water shortage conditions in CCS plots. This did not affect emergence of seedlings but reduced their survival. Seedlings that survived in CCS plots displayed shifts in their functional traits, which matched with those of plants subjected to thermal and water stress.Conclusions: Our results suggest that climate change can increase the extinction risk of Q. ariifolia in seasonally dry forest of Mexico by reducing the survival of its offspring. Nevertheless, the results also suggest that seedlings developed under climate change conditions can display functional shifts that could confer them tolerance to increased drought.


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1041
Author(s):  
Rubin Sagar ◽  
Ariadna Mondragon-Botero ◽  
Francine Dolins ◽  
Bryn Morgan ◽  
Thuy Phuong Vu ◽  
...  

Forest conservation and restoration are urgently needed to preserve key resources for the endemic fauna of dry southern Madagascar. This is a priority in the shrinking, seasonally dry forest of Berenty, a private reserve in Southern Madagascar. However, to provide a basis for forest restoration, a study of tree growth and regeneration in this unique biome is essential. A three-year planting program of native and endemic species was initiated in 2016. Three trial plots were established in forest gaps, with varying microclimates and soil conditions: one on the riverside, one in the mid-forest and the third in a degraded dryland area. We planted 1297 seedlings of 24 native tree species with plantings spaced at 1 m and 1.5 m and measured their height and stem diameters and recorded seedling mortality. We also recorded plant recruitment on the plots from the nearby forest. The main findings were that growth was best on the mid-forest plot planted at 1 m. Seedling mortality was highest on the riverside plot for the 1 m seedlings and least in the mid-forest at both planting distances. Recruitment was highest in the mid-forest at both planting distances and high also at 1.5 m by the river. These results are intended to aid future forest restoration on the Reserve and may serve as a reference for restoration of other dry forests in Madagascar. Finally, since species identification is central to the project, we collected, prepared and catalogued tree specimens to form a reference collection in an herbarium under construction in a new Research Centre at the reserve.


Cladistics ◽  
2018 ◽  
Vol 35 (4) ◽  
pp. 446-460 ◽  
Author(s):  
David A. Prieto‐Torres ◽  
Octavio R. Rojas‐Soto ◽  
Elisa Bonaccorso ◽  
Diego Santiago‐Alarcon ◽  
Adolfo G. Navarro‐Sigüenza

2005 ◽  
Vol 5 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Rodolfo Salm ◽  
Euphly Jalles-Filho ◽  
Cynthia Schuck-Paim

In this study we propose a model that represents the importance of large arborescent palms in the dynamics of seasonally-dry Amazonian forests. Specifically, the model is aimed at guiding the investigation of the role of large arborescent palms on forest regeneration and succession. Following disturbance, the high level of luminosity reaching recently formed forest gaps favors the quick proliferation of shade-intolerant lianas that, by casting shade on the crowns of mature forest trees and increasing tree-fall probability, suppress forest succession. Due to their columnar architecture palm trees are, however, not severely affected by vines. As the palms grow, the canopy at the gaps becomes gradually higher and denser, progressively obstructing the passage of light, thus hindering the growth of shade-intolerant lianas and enabling late-successional tree development and forest regeneration. Owing to the long time associated with forest regeneration, the model cannot be tested directly, but aspects of it were examined with field data collected at an Attalea maripa-rich secondary forest patch within a matrix of well-preserved seasonally-dry forest in the Southeastern Amazon. The results indicate that (1) forest disturbance is important for the recruitment of large arborescent palms species, (2) these palms can grow rapidly after an event of disturbance, restoring forest canopy height and density, and (3) secondary forest dominated by palm trees species may be floristically similar to nearby undisturbed forests, supporting the hypothesis that the former has undergone regeneration, as purported in the model.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
J. A. Pinedo-Escatel ◽  
G. Moya-Raygoza ◽  
C. H. Dietrich ◽  
J. N. Zahniser ◽  
L. Portillo

Tropical forests cover 7% of the earth's surface and hold 50% of known terrestrial arthropod species. Alarming insect declines resulting from human activities have recently been documented in temperate and tropical ecosystems worldwide, but reliable data from tropical forests remain sparse. The sap-sucking tribe Athysanini is one herbivore group sensitive to anthropogenic perturbation and the largest within the diverse insect family Cicadellidae distributed in America's tropical forests. To measure the possible effects of deforestation and related activities on leafhopper biodiversity, a survey of 143 historic collecting localities was conducted to determine whether species documented in the Mexican dry tropical forests during the 1920s to 1940s were still present. Biostatistical diversity analysis was performed to compare historical to recent data on species occurrences. A data matrix of 577 geographical records was analysed. In total, 374 Athysanini data records were included representing 115 species of 41 genera. Historically, species richness and diversity were higher than found in the recent survey, despite greater collecting effort in the latter. A strong trend in species decline was observed (−53%) over 75 years in this endangered seasonally dry ecosystem. Species completeness was dissimilar between historic and present data. Endemic taxa were significantly less important and represented in the 1920s–1940s species records. All localities surveyed in the dry tropical forest are disturbed and reduced by modern anthropogenic processes. Mexico harbours highly endemic leafhopper taxa with a large proportion of these inhabiting the dry forest. These findings provide important data for conservation decision making and modelling of distribution patterns of this threatened seasonally dry tropical ecosystem.


Author(s):  
R. Toby Pennington ◽  
Matt Lavin ◽  
Darién E. Prado ◽  
Colin A. Pendry ◽  
Susan K. Pell

2009 ◽  
Vol 4 (2) ◽  
pp. 69-76 ◽  
Author(s):  
Silvia Oliveira ◽  
Daniel Negreiros ◽  
G. Wilson Fernandes ◽  
Newton Barbosa ◽  
Rafaella Rocha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document