scholarly journals Threatened Neotropical seasonally dry tropical forest: evidence of biodiversity loss in sap-sucking herbivores over 75 years

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
J. A. Pinedo-Escatel ◽  
G. Moya-Raygoza ◽  
C. H. Dietrich ◽  
J. N. Zahniser ◽  
L. Portillo

Tropical forests cover 7% of the earth's surface and hold 50% of known terrestrial arthropod species. Alarming insect declines resulting from human activities have recently been documented in temperate and tropical ecosystems worldwide, but reliable data from tropical forests remain sparse. The sap-sucking tribe Athysanini is one herbivore group sensitive to anthropogenic perturbation and the largest within the diverse insect family Cicadellidae distributed in America's tropical forests. To measure the possible effects of deforestation and related activities on leafhopper biodiversity, a survey of 143 historic collecting localities was conducted to determine whether species documented in the Mexican dry tropical forests during the 1920s to 1940s were still present. Biostatistical diversity analysis was performed to compare historical to recent data on species occurrences. A data matrix of 577 geographical records was analysed. In total, 374 Athysanini data records were included representing 115 species of 41 genera. Historically, species richness and diversity were higher than found in the recent survey, despite greater collecting effort in the latter. A strong trend in species decline was observed (−53%) over 75 years in this endangered seasonally dry ecosystem. Species completeness was dissimilar between historic and present data. Endemic taxa were significantly less important and represented in the 1920s–1940s species records. All localities surveyed in the dry tropical forest are disturbed and reduced by modern anthropogenic processes. Mexico harbours highly endemic leafhopper taxa with a large proportion of these inhabiting the dry forest. These findings provide important data for conservation decision making and modelling of distribution patterns of this threatened seasonally dry tropical ecosystem.

2020 ◽  
Vol 193 (2) ◽  
pp. 263-275
Author(s):  
Jorge D Mercado Gómez ◽  
David A Prieto-Torres ◽  
Maylin Adriana Gonzalez ◽  
María Eugenia Morales Puentes ◽  
Tania Escalante ◽  
...  

Abstract In the Neotropics, the distribution of Capparaceae has been historically associated with seasonally dry forest (NSDF), but recent taxonomic studies have questioned this assumption. Given the environmental co-occurrence of species and the need to understand their relationships with the ecosystem, we use ecological niche modelling and numerical ecology methods to better describe the distribution patterns of Capparaceae and their climatic affinities with NSDF. We used the Maxent algorithm to model the ecological niches of 104 species of Capparaceae, which gave maximum values of the response curves for climatic suitability. These values were used to carry out multivariate statistical analyses [principal components analysis (PCA), non-metric multidimensional scaling (NMDS) and discriminant analysis (DA)] to identify ecological associations based on climatic similitude among species. Both PCA and NMDS showed that annual precipitation, precipitation of the wettest quarter and precipitation of the driest quarter were the most important climatic variables shaping distributions of species and their associations with NSDF, moist tropical forest (MTF) and wet tropical forest (WTF). Although we found 72 species associated with NSDF as previously reported, DA revealed an overlapping pattern among the three ecological/climatic assemblages (NSDF, MTF and WTF). This confirms the existence of transition zones and species with wider niches. Our results provide an important biogeographical framework of ecological patterns for species associated with NSDF, opening new lines of research on the reconstruction of distribution in future climatic scenarios or palaeo-distributions.


2020 ◽  
Vol 98 (4) ◽  
pp. 441-467
Author(s):  
Consuelo Medina-García ◽  
Alejandro Velázquez ◽  
Joaquin Giménez de Azcárate ◽  
Miguel Ángel Macías-Rodríguez ◽  
Alejandra Larrazábal ◽  
...  

Background: seasonally dry tropical forests are considered critical and important ecosystems because they harbor exceptional biological diversity. Mexico lacks sound phytosociological studies of Seasonally Dry Tropical Forest and Michoacán is no exception. The present study may be regarded the first phytosociological in most of the Mexican pacific coast where seasonally dry tropical forests occurs. Questions/Objective: We aimed at describing the representative plant associations of the seasonally dry tropical forest, distributed on western Michoacán and to provide a sintaxonomic classification framework based on the floristic differentiation of the recognized communities and highlight its phytocenotic diversity. Study site and dates: Estado de Michoacán; 20 years. Methods: A total of 82 phytosociological inventories were conducted. Data were submitted to multivariate two-way indicator species analyses to depict plant communities and their ecological affinities. Results: From its analysis and interpretation, nine plant groups were differentiated, of which all but one was given the rank of association, which are Lysilomo acapulcensis–Heliocarpetum terebinthinacei, Ceibo aesculifoliae–Lysilometum divaricatae, Caesalpinio platylobae-Cordietum elaeagnoidis, Cochlospermo vitifolii-Lueheetum candidae, Lysilomo divaricatae-Cordietum elaeagnoidis; Stenocereo quevedonis-Cordietum selerianae, Guazumo ulmifoliae-Cordietum elaeagnoidis¸ Lonchocarpo huetamoensis-Cordietum elaeagnoidis and the community of Spondias purpurea-Cochlospermum vitifolium. Conclusions: Comparative floristic and structural profiles among plant communities permitted us to distinguish their bioclimatic relationships. Diagnostic species representative of all plant associations were selected and used for sintaxonomic nomenclature.  Plant associations were finally array along bioclimatic and altitudinal gradients and showed in arranged phytosociological tables. The plant association/community’descriptions permitted to compare structural physiognomy, floristic composition, ecological affinities, distribution patterns and bioclimatic liaison among them.


Zootaxa ◽  
2019 ◽  
Vol 2724 (1) ◽  
pp. 29 ◽  
Author(s):  
ALEXANDRA M. R. BEZERRA ◽  
CIBELE R. BONVICINO ◽  
ALBERT A. N. MENEZES ◽  
JADER MARINHO-FILHO

The distribution, natural history, and morphology of Kerodon acrobata were updated based on nine new collected specimens totalling 14 known specimens. Two new localities were added to the distribution range of this species. Data on habitat use indicated that the presence of this rodent is associated to the cerrado sensu stricto and seasonally dry tropical forest patches in the northeastern Cerrado domain. Analyses of these specimens increased the range of body size and craniodental measurements for K. acrobata. We also describe, for the first time, phallic morphology of K. acrobata which exhibits a subcylindral glans penis and a simple baculum. High hunting activity and continuous loss of its natural habitat are factors that can be negatively affecting its populations. Habitat replacement poses a likely risk the present diversity at seasonally dry tropical forest enclaves of the northeastern Cerrado domain.


2014 ◽  
Vol 23 (2) ◽  
pp. 196 ◽  
Author(s):  
Nandita Mondal ◽  
Raman Sukumar

Anthropogenic fires in seasonally dry tropical forests are a regular occurrence during the dry season. Forest managers in India, who presently follow a fire suppression policy in such forests, would benefit from a system of assessing the potential risk to fire on a particular day. We examined the relationship between weather variables (seasonal rainfall, relative humidity, temperature) and days of fire during the dry seasons of 2004–2010, based on MODIS fire incident data in the seasonally dry tropical forests of Mudumalai in the Western Ghats, southern India. Logistic regression analysis showed that high probabilities of a fire day, indicating successful ignition of litter and grass fuel on the forest floor, were associated with low levels of early dry season rainfall, low daily average relative humidity and high daily average temperatures. These weather conditions are representative of low moisture levels of fine fuels, suggesting that the occurrence of fire is moderated by environmental conditions that reduce the flammability of fine fuels in the dry tropics. We propose a quantitative framework for assessing risk of a fire day to assist forest managers in anticipating fire occurrences in this seasonally dry tropical forest, and possibly for those across South Asia.


2019 ◽  
Author(s):  
Camila Martínez ◽  
◽  
Carlos Jaramillo ◽  
Jhonatan Martínez Murcia ◽  
Federico Moreno ◽  
...  

2006 ◽  
Vol 33 (3) ◽  
pp. 256-262 ◽  
Author(s):  
R. SAGAR ◽  
J.S. SINGH

Dry tropical forest communities are among the world's most threatened systems and urgent measures are required to protect and restore them in degraded landscapes. For planning conservation strategies, there is a need to determine the few essential measurable properties, such as number of species and basal area, that best describe the dry forest vegetation and its environment, and to document quantitative relationships among them. This paper examines the relationships between forest basal area and diversity components (number of species and evenness) for a disturbed dry tropical forest of northern India. Data were collected from five sites located in the Vindhyan dry tropical forest of India, selected on the basis of satellite images and field observations to represent the entire range of conditions in terms of canopy cover and disturbance regimes. These sites represented different communities in terms of species composition. The forest was poorer in species richness, and lower in stem density and basal area than wet forests of the tropics. Across sites (communities), the diversity components and tree density were positively related with total tree basal area. Considering basal area as a surrogate of biomass and net production, diversity is found to be positively associated with productivity. A positive relationship between basal area, tree density and species diversity may be an important characteristic of the dry forest, where recurring disturbance does not permit concentration of biomass or stems in only a few strong competitors. However, the relationships of basal area with density, alpha diversity and evenness remain statistically significant only when data from all sites, including the extremely disturbed one, are used in the analysis. In some sites there was a greater coefficient of variation (CV) of basal area than in others, attributed to patchy distribution of stems and resultant blanks. Therefore, to enhance the tree diversity of these forests, the variability in tree basal area must be reduced by regulating local disturbances. Conservation activities, particularly fuelwood plantations near human settlements, deferred grazing and canopy enrichment through multi-species plantations of nursery-raised or wild-collected seedlings of desirable species within the forest patches of low basal area, will be needed to attain restoration goals, but reforestation programmes will have to be made attractive to the forest-dwelling communities.


2021 ◽  
Author(s):  
Souparna Chakrabarty ◽  
Sheetal Sharma ◽  
Shatarupa Ganguly ◽  
Asmi Jezeera ◽  
Neha Mohanbabu ◽  
...  

AbstractLeaf phenology based classification of woody species into discrete evergreen and deciduous categories is widely used in ecology, but these categories hide important variation in leaf phenological behaviour. Few studies have examined the continuous nature of deciduousness and our understanding of variation in quantitative estimates of leaf shedding behaviour and the causes and consequences of this is limited. In this study we monitored leaf phenology in 75 woody species from a seasonally dry tropical forest to quantify three quantitative measures of deciduousness, namely: maximum canopy loss, duration of deciduousness, and average canopy loss. Based on proposed drought tolerance and drought avoidance strategies of evergreen and deciduous species, respectively, we tested whether the quantitative measures of deciduousness were related to leaf functional traits. Additionally, to understand the functional consequences of variation in deciduousness we examined relationships with the timing of leaf flushing and senescing. We found wide and continuous variation in quantitative measures of deciduousness in these coexisting species. Variation in deciduousness was related to leaf function traits, and the timing of leaf flushing. Along a continuous axis ranging from evergreen to deciduous species, increasing deciduousness was associated with more acquisitive leaf functional traits, with lower leaf mass per area and leaf dry matter content, and greater leaf nitrogen content. These results indicate that the continuous nature of deciduousness is an important component of resource acquisition strategies in woody species from seasonally dry forests.


2019 ◽  
Vol 12 (2) ◽  
pp. 173-182
Author(s):  
Vitaly K. Avilov ◽  
Dmitry G. Ivanov ◽  
Konstantin K. Avilov ◽  
Ivan P. Kotlov ◽  
Nguyen Van Thinh ◽  
...  

2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Silvia Pajares ◽  
Julio Campo ◽  
Brendan J. M. Bohannan ◽  
Jorge D. Etchevers

ABSTRACTSeveral studies have shown that rainfall seasonality, soil heterogeneity, and increased nitrogen (N) deposition may have important effects on tropical forest function. However, the effects of these environmental controls on soil microbial communities in seasonally dry tropical forests are poorly understood. In a seasonally dry tropical forest in the Yucatan Peninsula (Mexico), we investigated the influence of soil heterogeneity (which results in two different soil types, black and red soils), rainfall seasonality (in two successive seasons, wet and dry), and 3 years of repeated N enrichment on soil chemical and microbiological properties, including bacterial gene content and community structure. The soil properties varied with the soil type and the sampling season but did not respond to N enrichment. Greater organic matter content in the black soils was associated with higher microbial biomass, enzyme activities, and abundances of genes related to nitrification (amoA) and denitrification (nirKandnirS) than were observed in the red soils. Rainfall seasonality was also associated with changes in soil microbial biomass and activity levels and N gene abundances.Actinobacteria,Proteobacteria,Firmicutes, andAcidobacteriawere the most abundant phyla. Differences in bacterial community composition were associated with soil type and season and were primarily detected at higher taxonomic resolution, where specific taxa drive the separation of communities between soils. We observed that soil heterogeneity and rainfall seasonality were the main correlates of soil bacterial community structure and function in this tropical forest, likely acting through their effects on soil attributes, especially those related to soil organic matter and moisture content.IMPORTANCEUnderstanding the response of soil microbial communities to environmental factors is important for predicting the contribution of forest ecosystems to global environmental change. Seasonally dry tropical forests are characterized by receiving less than 1,800 mm of rain per year in alternating wet and dry seasons and by high heterogeneity in plant diversity and soil chemistry. For these reasons, N deposition may affect their soils differently than those in humid tropical forests. This study documents the influence of rainfall seasonality, soil heterogeneity, and N deposition on soil chemical and microbiological properties in a seasonally dry tropical forest. Our findings suggest that soil heterogeneity and rainfall seasonality are likely the main factors controlling soil bacterial community structure and function in this tropical forest. Nitrogen enrichment was likely too low to induce significant short-term effects on soil properties, because this tropical forest is not N limited.


Sign in / Sign up

Export Citation Format

Share Document