Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang-Mills theory

Author(s):  
H. C. J. Sealey

In (5) it is shown that if m ≽ 3 then there is no non-constant harmonic map φ: ℝm → Sn with finite energy. The method of proof makes use of the fact that the energy functional is not invariant under conformal transformations. This fact has also allowed Xin(9), to show that any non-constant-harmonic map φ:Sm → (N, h), m ≽ 3, is not stable in the sense of having non-negative second variation.

2005 ◽  
Vol 16 (09) ◽  
pp. 1017-1031 ◽  
Author(s):  
QUN HE ◽  
YI-BING SHEN

By simplifying the first and the second variation formulas of the energy functional and generalizing the Weitzenböck formula, we study the stability and the rigidity of harmonic maps between Finsler manifolds. It is proved that any nondegenerate harmonic map from a compact Einstein Riemannian manifold with nonnegative scalar curvature to a Berwald manifold with nonpositive flag curvature is totally geodesic and there is no nondegenerate stable harmonic map from a Riemannian unit sphere Sn (n > 2) to any Finsler manifold.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


2015 ◽  
Vol 26 (06) ◽  
pp. 1541010
Author(s):  
Seiki Nishikawa

Given a smooth map from a compact Riemann surface to a complex manifold equipped with a strongly pseudoconvex complex Finsler metric, we define the [Formula: see text]-energy of the map, whose absolute minimum is attained by a holomorphic map. A harmonic map is then defined to be a stationary map of the [Formula: see text]-energy functional. We prove that with each harmonic map is associated a holomorphic quadratic differential on the domain, which vanishes if the map is weakly conformal. Also, under the condition that the metric be weakly Kähler, we determine the second variation of the functional, and prove that any [Formula: see text]-energy minimizing harmonic map from the Riemann sphere to a weakly Kähler Finsler manifold of positive curvature is either holomorphic or anti-holomorphic.


Author(s):  
Volker Branding

Abstract4-harmonic and ES-4-harmonic maps are two generalizations of the well-studied harmonic map equation which are both given by a nonlinear elliptic partial differential equation of order eight. Due to the large number of derivatives it is very difficult to find any difference in the qualitative behavior of these two variational problems. In this article we prove that finite energy solutions of both 4-harmonic and ES-4-harmonic maps from Euclidean space must be trivial. However, the energy that we require to be finite is different for 4-harmonic and ES-4-harmonic maps pointing out a first difference between these two variational problems.


1999 ◽  
Vol 59 (3) ◽  
pp. 509-514 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

We derive the formula in the title and deduce some consequences. For example we show that the identity map from any compact manifold to itself is always stable as an exponentially harmonic map. This is in sharp contrast to the harmonic or p-harmonic cases where many such identity maps are unstable. We also prove that an isometric and totally geodesic immersion of Sm into Sn is an unstable exponentially harmonic map if m ≠ n and is a stable exponentially harmonic map if m = n.


2009 ◽  
Vol 146 (2) ◽  
pp. 435-459 ◽  
Author(s):  
J. C. GONZÁLEZ–DÁVILA ◽  
F. MARTÍN CABRERA

AbstractFor closed and connected subgroups G of SO(n), we study the energy functional on the space of G-structures of a (compact) Riemannian manifold (M, 〈⋅, ⋅〉), where G-structures are considered as sections of the quotient bundle (M)/G. We deduce the corresponding first and second variation formulae and the characterising conditions for critical points by means of tools closely related to the study of G-structures. In this direction, we show the rôle in the energy functional played by the intrinsic torsion of the G-structure. Moreover, we analyse the particular case G=U(n) for 2n-dimensional manifolds. This leads to the study of harmonic almost Hermitian manifolds and harmonic maps from M into (M)/U(n).


Author(s):  
Ahmad Afuni

AbstractWe establish new local regularity results for the harmonic map and Yang–Mills heat flows on Riemannian manifolds of dimension greater than 2 and 4, respectively, obtaining criteria for the smooth local extensibility of these flows. As a corollary, we obtain new characterisations of singularity formation and use this to obtain a local estimate on the Hausdorff measure of the singular sets of these flows at the first singular time. Finally, we show that smooth blow-ups at rapidly forming singularities of these flows are necessarily nontrivial and admit a positive lower bound on their heat ball energies. These results crucially depend on some local monotonicity formulæ for these flows recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).


2020 ◽  
Vol 10 (1) ◽  
pp. 534-547
Author(s):  
Jifeng Chu ◽  
Joachim Escher

Abstract When the vorticity is monotone with depth, we present a variational formulation for steady periodic water waves of the equatorial flow in the f-plane approximation, and show that the governing equations for this motion can be obtained by studying variations of a suitable energy functional 𝓗 in terms of the stream function and the thermocline. We also compute the second variation of the constrained energy functional, which is related to the linear stability of steady water waves.


2012 ◽  
Vol 27 (40) ◽  
pp. 1250233 ◽  
Author(s):  
ROSY TEH ◽  
BAN-LOONG NG ◽  
KHAI-MING WONG

We present finite energy SU(2) Yang–Mills–Higgs particles of one-half topological charge. The magnetic fields of these solutions at spatial infinity correspond to the magnetic field of a positive one-half magnetic monopole at the origin and a semi-infinite Dirac string on one-half of the z-axis carrying a magnetic flux of [Formula: see text] going into the origin. Hence the net magnetic charge is zero. The gauge potentials are singular along one-half of the z-axis, elsewhere they are regular.


2012 ◽  
Vol 23 (03) ◽  
pp. 1250003 ◽  
Author(s):  
QUN CHEN ◽  
WUBIN ZHOU

The main purpose of this paper is to study the properties of transversally harmonic maps by using Bochner-type formulas. As an application, we obtain the following theorem between compact Sasaki manifolds: Let f be a transversally harmonic map from compact Sasaki manifold M to compact Sasaki manifold M′, and M′ has a strongly negative transverse curvature. If the rank of dTf is at least three at some points of M, then f is contact holomorphic (or contact anti-holomorphic).


Sign in / Sign up

Export Citation Format

Share Document