scholarly journals effect of lactic acid bacteria silage inoculants on the ruminal ecosystem, fiber digestibility and animal performance

Author(s):  
Zwi G. Weinberg ◽  
Richard E. Muck ◽  
Nathan Gollop ◽  
Gilad Ashbell ◽  
Paul J. Weimer ◽  
...  

The overall objective of the whole research was to elucidate the mechanisms by which LAB silage inoculants enhance ruminant performance. The results generated will permit the development of better silage inoculants that maximize both silage preservation and animal performance. For this one-year BARD feasibility study, the objectives were to: 1. determine whether lactic acid bacteria (LAB) used in inoculants for silage can survive in rumen fluid (RF) 2.select the inoculants that survived best, and 3. test whether LAB silage inoculants produce bacteriocins-like substances. The most promising strains will be used in the next steps of the research. Silage inoculants containing LAB are used in order to improve forage preservation efficiency. In addition, silage inoculants enhance animal performance in many cases. This includes improvements in feed intake, liveweight gain and milk production in 25-40% of studies reviewed. The cause for the improvement in animal performance is not clear but appears to be other than direct effect of LAB inoculants on silage fermentation. Results from various studies suggest a possible probiotic effect. Our hypothesis is that specific LAB strains interact with rumen microorganisms which results in enhanced rumen functionality and animal performance. The first step of the research is to determine whether LAB of silage inoculants survive in RF. Silage inoculants (12 in the U.S. and 10 in Israel) were added to clarified and strained RF. Inoculation rate was 10 ⁶ (clarified RF), 10⁷ (strained RF) (in the U.S.) and 10⁷, 10⁸ CFU ml⁻¹ in Israel (strained RF). The inoculated RF was incubated for 72 and 96 h at 39°C, with and without 5 g 1⁻¹ glucose. Changes in pH, LAB numbers and fermentation products were monitored throughout the incubation period. The results indicated that LAB silage inoculants can survive in RF. The inoculants with the highest counts after 72 h incubation in rumen fluid were Lactobacillus plantarum MTD1 and a L. plantarum/P. cerevisiae mixture (USA) and Enterococcus faecium strains and Lactobacillus buchneri (Israel). Incubation of rumen fluid with silage LAB inoculants resulted in higher pH values in most cases as compared with that of un-inoculated controls. The magnitude of the effect varied among inoculants and typically was enhanced with the inoculants that survived best. This might suggest the mode of action of LAB silage inoculants in the rumen as higher pH enhances fibrolytic microorganisms in the rumen. Volatile fatty acid (VFA) concentrations in the inoculated RF tended to be lower than in the control RF after incubation. However, L. plalltarull1 MTDI resulted in the highest concentrations of VFA in the RF relative to other inoculants. The implication of this result is not as yet clear. In previous research by others, feeding silages which were inoculated with this strain consistently enhanced animal performance. These finding were recently published in Weinberg et.al.. (2003), J. of Applied Microbiology 94:1066-1071 and in Weinberg et al.. (2003), Applied Biochemistry and Biotechnology (accepted). In addition, some strains in our studies have shown bacteriocins like activity. These included Pediococcus pentosaceus, Enterococcus faecium and Lactobacillus plantarum Mill 1. These results will enable us to continue the research with the LAB strains that survived best in the rumen fluid and have the highest potential to affect the rumen environment.

Author(s):  
P. O' Kiely

When grass with an adequate content of fermentable substrate and epiphytic lactic acid bacteria is ensiled properly, the fermentation which follows is normally considered satisfactory. This fermentation can be altered by various categories of additive such as acids, sugars and inoculants, each of which can influence the fermentation differently. The experiment reported compared the fermentation products, aerobic stability and animal performance for silages made using formic acid or a Lactobacillus plantarum inoculant with well preserved silage made without additive treatment.A 42 day regrowth of Lolium multiflorum (cv. Lemtal) was harvested without wilting using two precision - chop harvesters. Alternate loads of grass were ensiled with (a) no additive, (b) formic acid (850g/kg) at 3.0 1/t or (c)inoculant (Ecosyl - ICI plc) at 3 1/t (separate harvester). The inoculant was constituted immediately before use and was applied in accordance with the manufacturers instructions. Harvesting was completed and the silos sealed within 26 hours of mowing. The silos were opened after 113 days.


Author(s):  
J A Rooke ◽  
F Kafilzadeh

The selection of lactic acid bacteria for use as silage additives is normally based upon their ability to dominate the silage fermentation and not upon benefits in animal performance. The object of this study was to investigate whether two lactic acid bacteria selected for fermentation characteristics would support the same animal performance as an established silage inoculant.On 5 June 1989, first cut, predominantly perennial ryegrass (Lolium perenne) was ensiled direct with no wilting in plastolene silos of 2 tonne capacity. The herbage was harvested with a precision chop forage harvester and the following additive treatments were applied: None, control (C); Formic acid (Add-F, BP Nutrition, 850g/kg; 3 litres/tonne), (F); inoculant E. (Ecosyl, ICI Pic, 106Lactobacillus plantarum /g): inoculant A, (Pediococcus sp, 10 /g); inoculant B (L. plantarum 106 /g). The silages were fed to 6 wether sheep (Suffolk x Halfbred), initial live-weight, 40.1 kg (s.d. 2.22kg). Because the silages were unstable aerobically and restricted quantities of each silage were available, all sheep were fed the silages in the same (random) order.


2019 ◽  
Vol 7 (1-2) ◽  
pp. 127-132
Author(s):  
Judit Peter Szucs ◽  
Agnes Suli ◽  
Timea Suli Zakar ◽  
Elizabet Berecz ◽  
Mate Pek

The object of the trial was to study the effect of some lactic acid bacteria strains on the fermentation and aerobic stability of whole plant maize silages.The whole plant maize raw material was 32% DM, in soft cheddar stage of grain ripeness. It was ensiled in 4.2 litre capacity glass micro-size silos in 5 replicates /each treatment and stored on constant air conditioned room temperature (22 oC) during 95 days. The average packing density of raw material was 211 kg DM/m3.The applied treatments: 1. Untreated control maize, 2. Enterococcus faecium 100,000 CFU/g fresh maize (FM), 3. Lactobacillus plantarum 50,000 CFU/g FM + Enterococcus faecium 50,000 CFU/g FM, 4. Lactococcus lactis 100,000 CFU/g FM, 5. Lactobacillus plantarum 50,000 CFU/g FM + Lactococcus lactis 50,000 CFU/g FM, 6. Lactobacillus plantarum 100,000 CFU/g FM.Aerobic stability study:  Applied Honig (1990 system).The main experiences are the following: Applied lactic acid bacteria strains improved the quality of fermentation of maize in general compare to untreated control one.Lactic acid bacteria strains significantly stimulated lactic acid production and decreased propionic and butyric acid production. The origin of ammonia decreased also under influence of lactic acid bacteria strains in unaerobic conditions.Enterococcus faecium and.Lactococcus lactis are not able to protect the maize silages against the aerobic deterioration with the applied dosage.  Lactobacillus plantarum itself produced the most favourable fermentation characteristics and protected the aerobic stability of silage the most effectively (during 4 day) compare to all other treated maize silages.


2011 ◽  
Vol 63 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Natasa Jokovic ◽  
Maja Vukasinovic ◽  
Katarina Veljovic ◽  
Maja Tolinacki ◽  
L. Topisirovic

Two hundred thirteen non-starter lactic acid bacteria isolated from Radan cheese during ripening were identified with both a classical biochemical test and rep-PCR with (GTG)5 primer. For most isolates, which belong to the Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Enterococcus faecium, a phenotypic identification was in good agreement with rep-PCR identification. Lactococeus lactis subsp. lactis, Enterococcus faecium and subspecies from the Lenconostoc mesenteroides group were the dominant population of lactic acid bacteria in cheese until 10 days of ripening and only one Streptococcus thermophilus strain was isolated from the 5-day-old cheese sample. As ripening progressed, Lactobacillus plantarum became the predominant species together with the group of heterofermentative species of lactobacilli that could not be precisely identified with rep-PCR.


2018 ◽  
Vol 6 (1-2) ◽  
pp. 50-56
Author(s):  
Judit Péter Szűcs ◽  
Ágnes Süli ◽  
Tímea Süli-Zakar ◽  
Elizabet Berecz ◽  
Máté Pék

The object of the trial was to study the effect of some lactic acid bacteria strains on the chemical composition, energy- and metabolisable protein (MP) content, microbiological characteristics and in-silo weight and dry matter losses of whole crop maize silages. The whole plant maize raw material was 32% DM, in soft cheddar stage of grain ripeness. It was ensiled in 4.2 litre capacity glass micro-size silos in 5 replicates /each treatment and stored on constant 25 °C room temperature on day 95. The average packing desity was 211kg DM/m3 The applied treatments: 1. Untreated control, 2. Enterococcus faecium 100.000 CFU/g FM, 3. Lactobacillus plantarum 50.000 CFU/g + Enterococcus faecium 50.000 CFU/g, 4. Lactococcus lactis 100.000 CFU/g, Lactobacillus plantarum 50.000 CFU + Lactococcus lactis 50.000 CFU/g, 6. Lactobacillus plantarum 100.000 CFU The main experiences are the following: Chemical composition of whole crop maize silages treated by lactic acid bacteria strains are significantly differed from the control in some cases on P 5% level but the nutritive value (energy and MP content) of silages did not change significantly compare to the control untreated silage. Number of yeast and mould CFU of control silage was the highest (4.5 x 104 CFU/g FM) among all kind of treated ones, which was significant on P 1% level. Weight loss and DM loss were lower in all of the lactic acid bacteria treated silages in general than it was measured in the control silage. Least weight loss and one-third of DM loss was detected in Lactobacillus plantarum 000 CFU/g treated silage among all kind of silages.  


Genetika ◽  
2009 ◽  
Vol 41 (3) ◽  
pp. 339-352 ◽  
Author(s):  
Amarela Terzic-Vidojevic ◽  
Jelena Lozo ◽  
Ljubisa Topisirovic

In this study two raw cow's milk cheeses of a different ripening period were examined. The cheeses were taken from a country household in the region of mountain Stara Planina and manufactured without adding of starter culture. A total 106 lactic acid bacteria (LAB) strains were isolated from both cheeses. They are tested by classical physiological tests as well as by API 50 CH tests. Proteolytic and antimicrobial activities were done too. Identification of LAB isolates was done by repetitive extragenic palindromic-polimerase chain reaction (rep-PCR) with (GTG)5 primer. The LAB isolates from cheese BGPT9 (four days old) belonged to the eight species of LAB (Lactobacillus plantarum, Lactobacillus paracasei subsp. paracasei, Lactobacillus delbrueckii, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Enterococcus durans and Leuconostoc garlicum), while in the BGPT10 cheese (eight months old) only two species were present (Lactobacillus plantarum and Enterococcus faecium). Proteolytic activity showed 30 LAB from BGPT9 cheese, mainly enterococci. From BGPT10 cheese only one isolate (which belonged to the Lactobacillus plantarum species) possessed partial ability to hydrolyze ?-casein. Seven enterococci from BGPT9 cheese and four enterococci from BGPT10 cheese produced antimicrobial compounds.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.


2021 ◽  
Vol 11 (13) ◽  
pp. 5765
Author(s):  
Joo-Yun Kim ◽  
Eun-Jung Choi ◽  
Jae-Ho Lee ◽  
Myeong-Seok Yoo ◽  
Keon Heo ◽  
...  

Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.


Sign in / Sign up

Export Citation Format

Share Document