scholarly journals Computed Tomography in the Evaluation of Plexopathies and Proximal Neuropathies

Author(s):  
John D. Stewart ◽  
Brian Schmidt ◽  
Roberto Wee

SUMMARY:We describe nine patients with plexopathies or proximal mononeuropathies due to mass lesions. In four, computed tomography (CT) was the only radiological technique to show the cause of the neuropathy. In five patients, CT either unequivocally confirmed the presence of an abnormality or was superior to other imaging techniques in showing its full anatomical extent. CT scanning is a valuable aid in the assessment of lesions of the peripheral nervous system, particularly plexopathies and mononeuropathies caused by retroperitoneal, pelvic or superior pulmonary sulcus tumors.

2020 ◽  
Vol 24 (02) ◽  
pp. 175-180
Author(s):  
Alberto Stefano Tagliafico ◽  
Raquel Prada González ◽  
Federica Rossi ◽  
Bianca Bignotti ◽  
Carlo Martinoli

AbstractThe peripheral nervous system is increasingly being investigated using medical imaging as a complement or in association with electrodiagnostics tests. The application of imaging techniques, such as ultrasound (US) and magnetic resonance imaging (MRI), allows detailed visualization of the peripheral nervous system. According to the European Society of Musculoskeletal Radiology, the use of US for nerve evaluation is strongly encouraged. In addition, the role of US is further enhanced by the wide application of US-guided techniques to diagnose or to treat peripheral nerve disorders.Standard evaluation of peripheral nerves on US usually relies on cross-sectional area evaluation with different cutoff values in the osteofibrous tunnels and outside them. In several anatomical areas, side-to-side comparison is highly recommended because it helps distinguish subtle variations by using the unaffected limb as an internal control.US is widely used to perform US-guided interventional procedures on peripheral nerves. The recent development of radiomics and machine and deep learning applied to peripheral nerves may reveal new insights beyond the capabilities of the human eye. Radiomics may have a role in expanding the diagnostic capabilities of US and MRI in the study of peripheral nerve pathology, especially when the cross-sectional area is not markedly increased.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1074-1075
Author(s):  
E. Rosa-Molinar

A persistent problem in elucidating the anatomy of the peripheral nervous system has been an inability to stain both myelinated and unmyelinated nerve fibers. To overcome this problem, our laboratory developed two workmg protocols for reliably and differentially labeling and staining the peripheral nervous system and combined them with an enzyme clearing and staining procedure for the simultaneous visualization of bone and cartilage.One protocol uses anti-acetylated α-tubulin immunohistochemistry to follow the course, peripheral branching, and origin of the ventral spinal nerve innervating the axial musculature and a second uses anterograde and retrograde transport of selectively applied 3000 molecular weight (MW) biotin dextran amines and/or biocytin to identify specific afferent and efferent projections and their cell bodies. Both procedures can be combined with an enzyme clearing and staining procedure for the simultaneous visualization of bone (alizarin red S) and cartilage (alcian blue) in whole-mount preparations.


2020 ◽  
Vol 13 (1) ◽  
pp. 6-15
Author(s):  
Ali El Dirani ◽  
Zahraa Hachem ◽  
Assaad Mohanna ◽  
Amira J. Zaylaa

Introduction: The diagnosis of Central Nervous System Lymphoma, especially the Primary Central Nervous System Lymphoma is carried out based on brain imaging, thus avoiding an unnecessary extend of surgery. But the traditional imaging techniques, such as Computed Tomography and Magnetic Resonance Imaging, were not satisfactory. Aims: This study was conducted to characterize the spectrum of advanced Neuroimaging, such as the advanced Magnetic Resonance Imaging features in the Central Nervous System Lymphoma patients in a comprehensive medical center in Lebanon, and compare them to what has been described in the literature review. Methods: It is a retrospective exploratory study of the clinical data and imaging features for patients admitted to the emergency and radiology departments with ages above 10 years, and who were diagnosed histopathologically with intracranial lymphoma. This study may be the first to make a Radiological evaluation of Central Nervous System Lymphoma on the local population of patients over 9 years . Results: Results showed that the study of the Computed Tomography and Magnetic Resonance Imaging data of 10 immunocompetent patients with Central Nervous System Lymphoma concurs with the previously described patient populations, except for the gender parameter. Tumors were mostly presented in the fifth or Sixth decade and they could be solitary or multi-focal. Lesions were typically located Preprint submitted to The Open Neuroimaging Journal May 14, 2020 in the supratentorial compartment. On the brain Computed Tomography, the lesions were hyperdense, and in pre-contrast Magnetic Resonance images, the lesions appeared hypointense on T1 and hyperintense on T2-Weighted images, but hypointense with respect to the grey matter. The lesions were also surrounded with a mild to moderate edema as compared to other intracranial neoplasms, such as glioblastomas. Evaluation results showed that on post-contrast Magnetic Resonance images, the majority of lesions exhibited a homogeneous enhancement of 50%. Majority of the lesions also showed a less common heterogeneous ring-like enhancement of 40%, and revealed the uncommon absence of enhancement of 10%. Calcifications, hemorrhage, and necrosis were rare findings and were present in only one patient. Conclusion: As a future prospect, studying whether the advanced imaging techniques may provide not only non-invasive and morphological characteristics but also non-invasive biological characteristics and thus accurate diagnosis could be considered.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


2000 ◽  
Vol 5 (2) ◽  
pp. 3-3
Author(s):  
Christopher R. Brigham ◽  
James B. Talmage

Abstract Lesions of the peripheral nervous system (PNS), whether due to injury or illness, commonly result in residual symptoms and signs and, hence, permanent impairment. The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) describes procedures for rating upper extremity neural deficits in Chapter 3, The Musculoskeletal System, section 3.1k; Chapter 4, The Nervous System, section 4.4 provides additional information and an example. The AMA Guides also divides PNS deficits into sensory and motor and includes pain within the former. The impairment estimates take into account typical manifestations such as limited motion, atrophy, and reflex, trophic, and vasomotor deficits. Lesions of the peripheral nervous system may result in diminished sensation (anesthesia or hypesthesia), abnormal sensation (dysesthesia or paresthesia), or increased sensation (hyperesthesia). Lesions of motor nerves can result in weakness or paralysis of the muscles innervated. Spinal nerve deficits are identified by sensory loss or pain in the dermatome or weakness in the myotome supplied. The steps in estimating brachial plexus impairment are similar to those for spinal and peripheral nerves. Evaluators should take care not to rate the same impairment twice, eg, rating weakness resulting from a peripheral nerve injury and the joss of joint motion due to that weakness.


2004 ◽  
Author(s):  
G. Galietta ◽  
A. Capasso ◽  
A. Fortuna ◽  
F. Fabi ◽  
P. Del Basso ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 11-14
Author(s):  
O. S. Levin ◽  
O. V. Matvievskaya

The article contains a comprehensive analysis of the summary epidemiological data obtained during the observational study to assess the effect of therapy with Ipigrix® on the dynamics of motor and sensory functions, as well as the severity of pain in outpatient patients with various diseases of the peripheral nervous system: mononeuropathy, polyneuropathy and polyradiculopathy of various origins.


Sign in / Sign up

Export Citation Format

Share Document