Oscillatory Occurrences in Ball Bearings

1952 ◽  
Vol 56 (504) ◽  
pp. 885-908 ◽  
Author(s):  
M. S. Frenkel

In this paper it is shown how, in an angular contact ball bearing, the motion of a ball depends on the dimensions, loading and speed of the bearing. In general, ball motion in an angular contact bearing differs from the simple motion usually visualised by including oscillatory occurrences, shown here analytically, graphically and visually. These oscillatory occurrences are shown to lead to premature fatigue of the bearing metal, as a function of the speed of rotation, thereby imposing the present limitations on maximum speed and “ life.”It is further shown that only when the dimensions of an angular contact ball bearing are related in a certain way, a motion is produced in which the oscillatory phenomena are eliminated. These relations are given as functions of loading and speed in a system of equations and limiting conditions (hereafter referred to as “ Relations of the Dimensions ”).

1994 ◽  
Vol 116 (2) ◽  
pp. 219-224 ◽  
Author(s):  
P. I. Tzenov ◽  
T. S. Sankar

This investigation focuses on the contact interaction between a ball and a torus ring as in ball bearings. The sliding velocity field at the nonplanar contact area is analyzed and the resulting friction force and moment are determined assuming same friction coefficient at any point of the contact area. The results are illustrated by an application case to an angular contact ball bearing. The procedure developed through an appropriate computer simulation is useful in ascertaining the steady-state motion of a ball in ball bearings, in friction-and-wear test machine, etc. The results contribute to a better understanding of the nature of friction phenomena and the ball motion controlled by these phenomena. They also provide data on sliding and amount of wear at the contact areas, as well as lubricant degradation.


1990 ◽  
Vol 112 (1) ◽  
pp. 105-110 ◽  
Author(s):  
H. Kawamura ◽  
K. Touma

This paper reports on an experimental study of the three-dimensional ball motion of an unbalanced ball in a 50-mm bore angular contact ball bearing operating at high speeds under axial loads. One bearing ball, which was unbalanced by making a small hole in it, was magnetized and the motion of the ball was determined using Hall-elements. The bearing was tested under various loads and speeds up to 12,000 rpm. The influence of unbalance eccentricity on the unbalanced ball’s motion was investigated.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


1976 ◽  
Vol 98 (3) ◽  
pp. 463-469 ◽  
Author(s):  
C. R. Gentle ◽  
R. J. Boness

This paper describes the development of a computer program used to analyze completely the motion of a ball in a high-speed, thrust-loaded ball bearing. Particular emphasis is paid to the role of the lubricant in governing the forces and moments acting on each ball. Expressions for these forces due to the rolling and sliding of the ball are derived in the light of the latest fluid models, and estimates are also made of the cage forces applicable in this specific situation. It is found that only when lubricant viscoelastic behavior is considered do the theoretical predictions agree with existing experimental evidence.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shengye Lin ◽  
Shuyun Jiang

This paper studies the stiffness characteristics of preloaded duplex angular contact ball bearings. First, a five degrees-of-freedom (5DOF) quasi-static model of the preloaded duplex angular contact ball bearing is established based on the Jones bearing model. Three bearing configurations (face-to-face, back-to-back, and tandem arrangements) and two preload mechanisms (constant pressure preload and fixed position preload) are included in the proposed model. Subsequently, the five-dimensional stiffness matrix of the preloaded duplex angular contact ball bearing is derived analytically. Then, an experimental setup is developed to measure the radial stiffness and the angular stiffness of duplex angular contact ball bearings. The simulated results match well with those from experiments, which prove the validity of the proposed model. Finally, the effects of bearing configuration, preload mechanism, and unloaded contact angle on the angular stiffness and the cross-coupling are studied systematically.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Shengye Lin ◽  
Shuyun Jiang

Abstract The purpose of this study is to investigate the dynamics of motorized spindle, in which the tilting effect of tandem duplex angular contact ball bearing is considered. First, the quasi-static model of the duplex angular contact ball bearing is developed based on the Jones's bearing model. Then, the model is numerically solved using the Newton–Raphson method to obtain 16 stiffness coefficients (including the tilting ones). Later, a modified transfer matrix method is used to establish the dynamic model of the motorized spindle system with 16 stiffness coefficients. Finally, experiments have been performed to detect the stiffness of the tandem duplex angular contact ball bearing and the unbalance response of the motorized spindle. Results show that the modified transfer matrix method can be used to analyze the dynamic behavior of the motorized spindle supported on tandem duplex angular contact ball bearings, the tilting effect of the tandem duplex angular contact ball bearing affects the dynamic behaviors of the motorized spindle, and the theoretical dynamic characteristics using the proposed model agree with the experimental ones.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Guang Zeng ◽  
Chunjiang Zhao ◽  
Xiaokai Yu ◽  
Biao Sun ◽  
Zhigang Xiao ◽  
...  

For the calculation model of high-speed angular contact bearing has many variables, the large root difference exists, and the Newton iterative method solving the convergence depends on the initial value problems; thus, the simplified calculation model is proposed and the algorithm is improved. Firstly, based on the nonlinear equations of variables recurrence method of the high-speed angular contact ball bearing calculation model, it is proved that the ultimate fundamental variables of calculation model are the actual inner and outer contact angles, the axial and radial deformations. According to this reason, the nonlinear equations are deformed and deduced, and the number of equations is reduced from 4Z + 2 to 2Z + 2 (Z represents the number of rolling bodies); a simplified calculation model is formed. Secondly, according to the small dependence of the artificial bee colony algorithm on the initial value, an improved artificial bee colony algorithm is proposed for the large root difference characteristics of high-speed ball bearings. The validity of the improved algorithm is verified by standard test function. The algorithm is used to solve the high-speed angular contact ball bearing calculation model. Finally, the deformations of high-speed angular contact ball bearings are compared and verified by experiments, and the results of improved algorithm show good agreement with the experiments results.


2020 ◽  
pp. 1-32
Author(s):  
Zhongchi Yang ◽  
Yu Zhang ◽  
Ke Zhang ◽  
Songhua Li

Abstract The effects of the uncertainty of angular misalignment on the wear of angular contact ball bearings in the spindle system are investigated. The wear model of bearing raceways is derived based on Archard model. The angular misalignment caused by mounting error is assumed to comply with normal distribution, Monte Carlo method is used to extract angular misalignment sample. Based on the spindle system model, the spinning speed, pitch angle and contact force of ball elements in each angular contact ball bearing are calculated. The wear depth of bearing raceways is analyzed. The results show that the uncertainty of the initial angular misalignment leads to significant dispersion of wear depth of ball bearings, but the dispersion degree is related to spindle speed, angular misalignment cases, and bearing mounting position. Increasing the spindle speed increases the wear depth but decreases the wear depth dispersion.


2015 ◽  
Vol 9 (1) ◽  
pp. 156-159 ◽  
Author(s):  
Chun L. Lei ◽  
Zhi Y. Rui ◽  
Qin Wu ◽  
Jun F. Guo ◽  
Li N. Ren

In order to more accurately calculate the film stiffness of angular contact ball bearing, it is necessary to establish the film stiffness calculation model that is consistent with reality. The frictional heat exists in high-speed ball bearings, and can impact on oil film thickness and stiffness. The calculation model of film stiffness of an angular contact ball bearing taking account of the effects of viscous heating was proposed based on the elastohydrodynamic lubrication theory. The central film thickness and film stiffness have been determined. An example was calculated with this derived equation and the result was compared with that given in other literatures. The calculation results show that the central film thickness decreases and the film stiffness increases when friction heating are considered.


Sign in / Sign up

Export Citation Format

Share Document