scholarly journals Development of a PC-Based Software Receiver for the Reception of Beidou Navigation Satellite Signals

2013 ◽  
Vol 66 (5) ◽  
pp. 701-718 ◽  
Author(s):  
Jyh-Ching Juang ◽  
Chiu-Teng Tsai ◽  
Yu-Hsuan Chen

Beidou is the Global Navigation Satellite System (GNSS) being developed in China, with the aim to provide a global navigation service that is similar to the Global Positioning System (GPS) and Galileo navigation systems. In this paper, it is demonstrated that through the flexibility and re-configurability of a PC-based software receiver in which the baseband operations are realized in terms of software, it is possible to acquire, track, and demodulate Beidou satellite signals even when only a limited amount of information is known. Further, with the Beidou interface control document now available, the proposed PC-based software receiver can be easily adapted to perform navigation functions. This research lays the foundation for the further development of navigation receivers and exploration of multi-GNSS applications.

2010 ◽  
Vol 63 (2) ◽  
pp. 269-287 ◽  
Author(s):  
S. Abbasian Nik ◽  
M. G. Petovello

These days, Global Navigation Satellite System (GNSS) technology plays a critical role in positioning and navigation applications. Use of GNSS is becoming more of a need to the public. Therefore, much effort is needed to make the civilian part of the system more accurate, reliable and available, especially for the safety-of-life purposes. With the recent revitalization of Russian Global Navigation Satellite System (GLONASS), with a constellation of 20 satellites in August 2009 and the promise of 24 satellites by 2010, it is worthwhile concentrating on the GLONASS system as a method of GPS augmentation to achieve more reliable and accurate navigation solutions.


2020 ◽  
Vol 2 (1) ◽  
pp. 41
Author(s):  
Ashutosh Bhardwaj

Satellite-based navigation techniques have revolutionized modern-day surveying with unprecedented accuracies along with the traditional and terrestrial-based navigation techniques. However, the satellite-based techniques gain popularity due to their ease and availability. The position and attitude sensors mounted on satellites, aerial, and ground-based platforms as well as different types of equipment play a vital role in remote sensing providing navigation and data. The presented review in this paper describes the terrestrial (LORAN-C, Omega, Alpha, Chayka) and satellite-based systems with their major features and peculiar applications. The regional and global navigation satellite systems (GNSS) can provide the position of a static object or a moving object i.e., in Kinematic mode. The GNSS systems include the NAVigation Satellite Timing And Ranging Global Positioning System (NAVSTAR GPS), of the United States of America (USA); the Globalnaya navigatsionnaya sputnikovaya sistema (GLObal NAvigation Satellite System, GLONASS), of Russia; BEIDOU, of China; and GALILEO, of the European Union (EU). Among the initial satellite-based regional navigation systems included are the TRANSIT of the US and TSYKLON of what was then the USSR which became operational in the 1960s. Regional systems developed in the last decade include the Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite System (IRNSS). Currently, these global and regional satellite-based systems provide their services with accuracies of the order of 10–20 m using the trilateration method of surveying for civil use. The terrestrial and satellite-based augmented systems (SBAS) were further developed along with different surveying techniques to improve the accuracies up to centimeters or millimeter levels for precise applications.


2019 ◽  
Vol 92 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kamil Krasuski ◽  
Janusz Cwiklak ◽  
Marek Grzegorzewski

Purpose This paper aims to present the problem of the integration of the global positioning system (GPS)/global navigation satellite system (GLONASS) data for the processing of aircraft position determination. Design/methodology/approach The aircraft coordinates were obtained based on GPS and GLONASS code observations for the single point positioning (SPP) method. The numerical computations were executed in the aircraft positioning software (APS) package. The mathematical scheme of equation observation of the SPP method was solved using least square estimation in stochastic processing. In the research experiment, the raw global navigation satellite system data from the Topcon HiperPro onboard receiver were applied. Findings In the paper, the mean errors of an aircraft position from APS were under 3 m. In addition, the accuracy of aircraft positioning was better than 6 m. The integrity term for horizontal protection level and vertical protection level parameters in the flight test was below 16 m. Research limitations/implications The paper presents only the application of GPS/GLONASS observations in aviation, without satellite data from other navigation systems. Practical implications The presented research method can be used in an aircraft based augmentation system in Polish aviation. Social implications The paper is addressed to persons who work in aviation and air transport. Originality/value The paper presents the SPP method as a satellite technique for the recovery of an aircraft position in an aviation test.


2017 ◽  
Vol 67 (4) ◽  
pp. 443 ◽  
Author(s):  
S. Naveen Pitchumani ◽  
S. Arun Sundar ◽  
T. Srinivasan ◽  
S. Savithri

<p class="p1">At present the armoured fighting vehicles are equipped with either global positioning system (GPS) receivers or integrated inertial navigation system (INS)/GPS navigation systems. During hostile situations, the denial/degradation of the GPS satellite signals may happen. This results in the requirement of an indigenous satellite based navigation system. Indian Space Research Organisation has developed an indigenous Indian regional navigation satellite system (IRNSS), with a seven satellite constellation to provide independent position, navigation and timing services over India and its neighbouring regions. In this paper, the development of IRNSS receiver using MATLAB as per IRNSS signal in space interface control document for standard positioning service is discussed. A method for faster IRNSS signal acquisition in frequency domain and delay locked loop code tracking for the acquired satellite signals are used. Models for navigation message decoding and pseudo range/user position calculations are developed using the algorithms provided in IRNSS ICD.</p>


2021 ◽  
Vol 73 (2) ◽  
pp. 646-665
Author(s):  
Isabel Cristina Moraes ◽  
Shanti Nitya Marengo ◽  
Gustavo Luís Schacht ◽  
Débora Santos Passos

O acesso a geolocalização em smartphones e tablets tem apontado seu uso potencial no levantamento de dados georreferenciados e como ferramenta de mapeamento replicável por usuários não-especialistas. O objetivo deste artigo é apresentar a experiência do mapeamento participativo dos territórios de ação das equipes de Estratégia de Saúde da Família (ESF) do município de Santo Amaro (BA) com recursos de GPS/GNSS (Global Positioning System/Global Navigation Satellite System) e imagem de satélite do Google Earth, no aplicativo Map Marker. Neste trabalho, são apresentados os aspectos da percepção e transcrição dos elementos espaciais no processo de digitalização e atualização cartográfica destes territórios.  Foram realizadas oficinas nas 17 unidades básicas de saúde (UBS) a fim de cartografar os territórios de atuação – microáreas - dos 104 Agentes Comunitários de Saúde (ACS). Das 17 UBS, 10 apresentavam algum produto cartográfico. Esses produtos pré-existentes contribuíram para a correspondência espacial entre o território e as imagens de satélite. A identificação das microáreas foi satisfatória, porém, o maior desafio foi a vetorização das poligonais. Apesar disso, em cada equipe houve ao menos um profissional que se destacou e foi capaz de reproduzir a metodologia sem um mediador. O uso das tecnologias geoespaciais aplicadas ao mapeamento em saúde mostrou-se viável para a área de estudo, e reforça a importância do treinamento para a autonomia dos atores sociais e a democratização desses recursos nas estratégias em saúde pública. A obtenção destas bases cartográficas deve subsidiar à espacialização de doenças registradas na atenção básica bem como à gestão de saúde do município.


2021 ◽  
Vol 17 (5) ◽  
pp. 155014772110167
Author(s):  
Fan Qin ◽  
Linxia Fu ◽  
Yuanqing Wang ◽  
Yi Mao

Global navigation satellite system is indispensable to provide positioning, navigation, and timing information for pedestrians and vehicles in location-based services. However, tree canopies, although considered as valuable city infrastructures in urban areas, adversely degrade the accuracy of global navigation satellite system positioning as they attenuate the satellite signals. This article proposes a bagging tree-based global navigation satellite system pseudorange error prediction algorithm, by considering two variables, including carrier to noise C/ N0 and elevation angle θe to improve the global navigation satellite system positioning accuracy in the foliage area. The positioning accuracy improvement is then obtained by applying the predicted pseudorange error corrections. The experimental results shows that as the stationary character of the geostationary orbit satellites, the improvement of the prediction accuracy of the BeiDou navigation satellite system solution (85.42% in light foliage and 83.99% in heavy foliage) is much higher than that of the global positioning system solution (70.77% in light foliage and 73.61% in heavy foliage). The positioning error values in east, north, and up coordinates are improved by the proposed algorithm, especially a significant decrease in up direction. Moreover, the improvement rate of the three-dimensional root mean square error of positioning accuracy in light foliage area test is 86% for BeiDou navigation satellite system/global positioning system combination solutions, while the corresponding improvement rate is 82% for the heavy foliage area test.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Xingxing Li ◽  
Xuanbin Wang ◽  
Jianchi Liao ◽  
Xin Li ◽  
Shengyu Li ◽  
...  

AbstractBecause of its high-precision, low-cost and easy-operation, Precise Point Positioning (PPP) becomes a potential and attractive positioning technique that can be applied to self-driving cars and drones. However, the reliability and availability of PPP will be significantly degraded in the extremely difficult conditions where Global Navigation Satellite System (GNSS) signals are blocked frequently. Inertial Navigation System (INS) has been integrated with GNSS to ameliorate such situations in the last decades. Recently, the Visual-Inertial Navigation Systems (VINS) with favorable complementary characteristics is demonstrated to realize a more stable and accurate local position estimation than the INS-only. Nevertheless, the system still must rely on the global positions to eliminate the accumulated errors. In this contribution, we present a semi-tight coupling framework of multi-GNSS PPP and Stereo VINS (S-VINS), which achieves the bidirectional location transfer and sharing in two separate navigation systems. In our approach, the local positions, produced by S-VINS are integrated with multi-GNSS PPP through a graph-optimization based method. Furthermore, the accurate forecast positions with S-VINS are fed back to assist PPP in GNSS-challenged environments. The statistical analysis of a GNSS outage simulation test shows that the S-VINS mode can effectively suppress the degradation of positioning accuracy compared with the INS-only mode. We also carried out a vehicle-borne experiment collecting multi-sensor data in a GNSS-challenged environment. For the complex driving environment, the PPP positioning capability is significantly improved with the aiding of S-VINS. The 3D positioning accuracy is improved by 49.0% for Global Positioning System (GPS), 40.3% for GPS + GLOANSS (Global Navigation Satellite System), 45.6% for GPS + BDS (BeiDou navigation satellite System), and 51.2% for GPS + GLONASS + BDS. On this basis, the solution with the semi-tight coupling scheme of multi-GNSS PPP/S-VINS achieves the improvements of 41.8–60.6% in 3D positioning accuracy compared with the multi-GNSS PPP/INS solutions.


2018 ◽  
Vol 6 (2) ◽  
pp. 155
Author(s):  
Gabriel Oliveira Jerez ◽  
Daniele Barroca Marra Alves

O GPS (Global Positioning System) e o GLONASS (GLObal NAvigation Satellite System) começaram a ser desenvolvidos ainda no início da década de setenta e são, atualmente, os principais sistemas GNSS (Global Navigation Satellite System) com constelação completa disponível. Apesar de os dois sistemas terem obtido constelações completas em períodos próximos, o GLONASS passou por um longo período de degradação, causada principalmente pela falta de investimentos e lançamentos para substituição de satélites mais antigos. Com isso o uso de dados combinados GPS/GLONASS acabou se tornando inviável já no final da década de noventa, devido à instabilidade do GLONASS. Porém, o sistema passou por um processo de modernização e restabelecimento a partir de 2001, obtendo novamente constelação completa de 24 satélites e cobertura global em 2011. A partir dessa nova realidade, novos estudos se fizeram necessário. Nesse sentido o presente trabalho buscou fazer uma revisão dos principais conceitos relacionados ao sistema, bem como do seu histórico, estrutura, além do seu processo de modernização e algumas perspectivas futuras.


Sign in / Sign up

Export Citation Format

Share Document