Evaluation of C-Band Precise Orbit Determination of Geostationary Earth Orbit Satellites based on the Chinese Area Positioning System

2013 ◽  
Vol 67 (2) ◽  
pp. 343-351 ◽  
Author(s):  
Cao Fen ◽  
Yang XuHai ◽  
Su MuDan ◽  
Li ZhiGang ◽  
Chen Liang ◽  
...  

Geostationary Earth Orbit (GEO) satellites play a significant role in the space segment of the Chinese Area Navigation System. The C-Band transfer ranging method developed by the National Time Service Center (NTSC) has been widely used in the Chinese Area Positioning System (CAPS), with its advantages of separating satellite ranging from time synchronization and being unaffected by weather. The explicit ranging correction models for the C-Band transfer ranging method are introduced in detail in this article for the first time. Precise Orbit Determination (POD) using C-Band pseudo-range observation of GEO satellite 2010-001A in July 2012 has been conducted. The residual Root Mean Square (RMS) of each site and POD are analysed with orbit difference over overlaps of adjacent orbit arcs. Moreover, the orbit of the GEO satellite has been evaluated by Satellite Laser Ranging (SLR) data from both domestic and foreign SLR sites for the first time. The residual RMS of POD using C-Band observation is better than 0·1 m, and the orbit difference over overlaps of adjacent orbit arcs is better than 3 m. In addition, the residual RMS in line-of-sight for a SLR site in China are better than 1 m, while the RMS for the Yarragadee site in Australia is about 3·4 m. It has been shown that the GEO satellite orbit accords very well with the C-Band observation. Also, the distribution of CAPS stations affects the orbit precision. All sites in CAPS are now located in China with low and medium latitudes. The residual RMS of the SLR site in the southern hemisphere is larger than that of the site in China.

2019 ◽  
Vol 11 (23) ◽  
pp. 2735 ◽  
Author(s):  
Honglei Yang ◽  
Tianhe Xu ◽  
Wenfeng Nie ◽  
Fan Gao ◽  
Meiqian Guan

The BeiDou Navigation Satellite System (BDS) of China is currently in the hybrid-use period of BDS-2 and BDS-3 satellites. All of them are equipped with Laser Retroreflect Arrays (LRAs) for Satellite Laser Ranging (SLR), which can directly obtain an independent, sub-centimetre level of distance measurement. The main purpose of this contribution is to use the solely SLR Normal Points (NPs) data to determinate the precise orbit of BDS-2 and BDS-3 satellites, including one Geostationary Earth Orbit (GEO), three Inclined Geo-Synchronous Orbits (ISGO), and one Medium Earth Orbit (MEO) of BDS-2 satellites, as well as four MEO of BDS-3 satellites, from 1 January to 30 June 2019. The microwave-based orbit from Wuhan University (WUM) are firstly validated to mark and eliminate the bad SLR observations in our preprocessing stage. Then, the 3-, 5-, 7-, and 9-day arc solutions are performed to investigate the impact of the different orbital arc lengths on the quality of SLR-derived orbits and test the optimal solution of the multi-day arc. Moreover, the dependency of SLR-only orbit determination accuracy on the number of SLR observations and the number of SLR sites are discussed to explore the orbit determination quality of the 3-,5-, 7-, and 9-day arc solutions. The results indicate that (1) during the half-year time span of 2019, the overall Root Mean Square (RMS) of SLR validation residuals derived from WUM is 19.0 cm for BDS-2 GEO C01, 5.2–7.3 cm for three BDS-2 IGSO, 3.4 cm for BDS-2 MEO C11, and 4.4–5.7 cm for four BDS-3 MEO satellites respectively. (2) The 9-day arc solutions present the best orbit accuracy in our multi-day SLR-only orbit determination for BDS IGSO and MEO satellites. The 9-day overlaps median RMS of BDS MEO in RTN directions are evaluated at 3.6–5.7, 12.4–21.6, and 15.6–23.9 cm respectively, as well as 5.7–9.6, 15.0–36.8, and 16.5–35.2 cm for the comparison with WUM precise orbits, while these values of BDS IGSO are larger by a factor of about 3–10 than BDS MEO orbits in their corresponding RTN directions. Furthermore, the optimal average 3D-RMS of 9-day overlaps is 0.49 and 1.89 m for BDS MEO and IGSO respectively, as well as 0.55 and 1.85 m in comparison with WUM orbits. Owing to its extremely rare SLR observations, the SLR-only orbit determination accuracy of BDS-2 GEO satellite can only reach a level of 10 metres or worse. (3) To obtain a stable and reliable SLR-only precise orbit, the 7-day to 9-day arc solutions are necessary to provide a sufficient SLR observation quantity and geometry, with more than 50–80 available SLR observations at 5–6 SLR sites that are evenly distributed, both in the Northern and Southern Hemispheres.


GPS Solutions ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Xingxing Li ◽  
Yongqiang Yuan ◽  
Yiting Zhu ◽  
Wenhai Jiao ◽  
Lang Bian ◽  
...  

2016 ◽  
Vol 69 (6) ◽  
pp. 1234-1246
Author(s):  
Cao Fen ◽  
Yang Xuhai ◽  
Li Zhigang ◽  
Chen Liang ◽  
Feng Chugang

In C-Band transfer measuring systems, the Precise Orbit Determination (POD) precision of Geostationary Earth Orbit (GEO) satellites is limited by signal biases such as the station delay biases, transponder delay biases, the ionospheric delay model bias, etc. In order to improve the POD precision, the signal biases of the Chinese Area Positioning System (CAPS) are calibrated using Satellite Laser Ranging (SLR) and C-Band Transfer Ranging (CBTR) observations. Since the Changchun SLR site and C-Band station are close to each other, the signal biases of the Changchun C-Band station are calibrated using the co-location comparison method. Then the signal biases of the other two CAPS C-Band stations, located in Linton and Kashi, are calibrated using the combined POD method, with the signal biases of the Changchun C-Band station being fixed. After the signal biases are calibrated, the RMS of the line-of-sight residuals of the Changchun SLR observations decrease by 0·4 m, with the percentage improvement being 75·19%.


2009 ◽  
Vol 52 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Yong Huang ◽  
XiaoGong Hu ◽  
Cheng Huang ◽  
QiangWen Yang ◽  
WenHai Jiao

2019 ◽  
Vol 11 (21) ◽  
pp. 2587
Author(s):  
Qin ◽  
Huang ◽  
Zhang ◽  
Wang ◽  
Yan ◽  
...  

In order to provide better service for the Asia-Pacific region, the BeiDou navigation satellite system (BDS) is designed as a constellation containing medium earth orbit (MEO), geostationary earth orbit (GEO), and inclined geosynchronous orbit (IGSO). However, the multi-orbit configuration brings great challenges for orbit determination. When orbit maneuvering, the orbital elements of the maneuvered satellites from broadcast ephemeris are unusable for several hours, which makes it difficult to estimate the initial orbit in the process of precise orbit determination. In addition, the maneuvered force information is unknown, which brings systematic orbit integral errors. In order to avoid these errors, observation data are removed from the iterative adjustment. For the above reasons, the precise orbit products of maneuvered satellites are missing from IGS (international GNSS (Global Navigation Satellite System) service) and iGMAS (international GNSS monitoring and assessment system). This study proposes a method to determine the precise orbits of maneuvered satellites for BeiDou GEO and IGSO. The initial orbits of maneuvered satellites could be backward forecasted according to the precise orbit products. The systematic errors caused by unmodeled maneuvered force are absorbed by estimated pseudo-stochastic pulses. The proposed method for determining the precise orbits of maneuvered satellites is validated by analyzing data of stations from the Multi-GNSS Experiment (MGEX). The results show that the precise orbits of maneuvered satellites can be estimated correctly when orbit maneuvering, which could supplement the precise products from the analysis centers of IGS and iGMAS. It can significantly improve the integrality and continuity of the precise products and subsequently provide better precise products for users.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2847 ◽  
Author(s):  
Hyungjik Oh ◽  
Eunseo Park ◽  
Hyung-Chul Lim ◽  
Chandeok Park

Geostationary Earth Orbit (GEO)-Korea Multi-Purpose Satellite (KOMPSAT)-2B (GK-2B) is a Korean geostationary Earth orbit (GEO) satellite that is scheduled to be launched in 2020 for meteorological and ocean monitoring. While the primary orbit determination (OD) for GK-2B is by ground-based radar observations and the expected orbit precision is less than 1 km, a satellite laser ranging (SLR) technique has been selected as a subsidiary OD method to verify/complement/enhance primary OD results. In general, the available time and equipment for observing GEO satellites with SLR are limited. Furthermore, because the optical sensors mounted on GK-2B may be defected by laser, only a domestic single SLR station would obtain the tracking data. This research presents the mitigation of these drawbacks to improve orbit precision. Observation data generation and the associated OD of GK-2B are performed by considering numerical SLR data analysis on Compass-G1, a Chinese GEO navigation satellite, and Chinese SLR station at Changchun. With the OD performed for two scenarios with the varying number of observations, the 3D position error is 24.01 m when 13 observations per day are obtained, while the error becomes 43.46 m when 9 observations per day are obtained. To verify these results, the OD of Compass-G1 using actual SLR data from Changchun station is performed to yield 31.89 m for 3D error, which is favorable compared with the external precise ephemeris by GeoForschungsZentrum (GFZ) analysis center. Therefore, the OD based on single SLR station is applicable to estimating the orbit within less than 100 m.


2020 ◽  
Author(s):  
Florian Dilssner ◽  
Erik Schönemann ◽  
Volker Mayer ◽  
Tim Springer ◽  
Francisco Gonzalez ◽  
...  

<p>To produce Global Navigation Satellite System (GNSS) orbits and clocks with high accuracy and for all constellations, the ESA’s Navigation Support Office (NSO) continually strives to keep abreast and improve its precise orbit determination (POD) strategies. In this presentation, we report on NSO’s recent developments and progress in Galileo and BeiDou POD. We first discuss the approach of improving Galileo POD solutions through a prudent combination of radiometric and satellite laser ranging (SLR) measurements at the observation level. For this technique to be effective, SLR normal point (NP) data from the Galileo SUCCESS campaign are used. Launched by the European Laser Network (EUROLAS) in the middle of May 2019, this three-week tracking campaign provided over 1000 NPs for two selected Galileo spacecraft: GSAT0102 and GSAT0220. We show that the precision of the GSAT0102 and GSAT0220 orbits is more than 10 percent better than that produced by solutions without SLR data. In this performance evaluation, we also discuss the presence of station-specific SLR biases, taking advantage of near-simultaneous SLR tracking by two or three separate laser sites. Additionally, we demonstrate that the SLR full-rate data from a single kHz laser system can be used to determine the Galileo satellites’ yaw state during eclipse maneuvers. This approach takes advantage of the 1.0 m distance between a Galileo spacecraft’s laser retroreflector array (LRA) and rotation axis to estimate the yaw angle in a recursive least-squares algorithm epoch by epoch. The method may serve as an interesting alternative to reverse kinematic point positioning (RPP), particularly for LRA-equipped satellites without significant transmit antenna phase center offsets. Finally, we present the first centimeter-quality orbit solutions for BeiDou’s third-generation series of medium Earth orbit (MEO) spacecraft. We discuss the POD strategy underlying these orbits and evaluate its performance by way of several metrics including laser range residuals, day-to-day orbit overlaps, satellite clock residuals, as well as RPP estimates as measure for the attitude model accuracy. Challenges pertaining to the satellite antenna phase center and radiation force modeling are addressed. The results on the overlap and SLR residuals suggest that our BeiDou-3 MEO orbits are accurate to better than 5 cm in all three components. Therefore, the new BeiDou constellation is fully integrated into our operational multi-GNSS routine, bringing the total number of daily processed GNSS satellites to more than 110 (http://navigation-office.esa.int/products/gnss-products).</p>


2021 ◽  
Vol 13 (24) ◽  
pp. 5002
Author(s):  
Houzhe Zhang ◽  
Defeng Gu ◽  
Bing Ju ◽  
Kai Shao ◽  
Bin Yi ◽  
...  

The TH-2 satellite system, including the TH-2A and TH-2B, is the first distributed interferometric synthetic aperture radar (InSAR) satellite system in China. During the in-orbit operation, the TH-2A satellite should perform three maneuvers per day to keep the formation flying geometry. We estimate those maneuvers in the precise orbit determination (POD) by the GPS and BDS2 measurements on board, respectively. The residuals of the POD show that the effects caused by orbital maneuvers can be well eliminated for both the GPS and BDS2 data. The precision of the BDS2-based POD is better than 8.0 cm in the three-dimensional direction (3D) compared with the orbit derived from the GPS observations. Such a precision level of the satellite orbit satisfies the InSAR mission requirement of the TH-2. In addition, the relative error of velocity changes is employed to evaluate the maneuver estimations by the POD using the regional navigation system of BDS2. The results show that the relative error of velocity changes between the GPS- and BDS2-based POD is less than 7.0%, which indicates that the maneuver performance extracted from the regional BDS2 data is as good as that extracted from the global GPS data. In the GNSS fused processing, we found that the independent receiver clock offsets should be taken into account, since the time tag corrections for the GPS and BDS2 observations collected on the TH-2 spaceborne receivers were different. The precision of the GPS and BDS2 (GC) combined single point positioning (SPP) can be improved by 12–14% compared with the GPS-only solution when the position dilution of precision (PDOP) of GPS exceeds three. The overlap comparisons of the GC combined orbits show that the internal orbit precision of the TH-2 satellites is better than 0.7 cm. However, the improvement of the GC combined POD result is only 3–4% with respect to the GPS-only solution, which is limited to the precision of the precise orbit and clock products of BDS2 at the present stage.


Sign in / Sign up

Export Citation Format

Share Document