Graph-optimisation-based self-calibration method for IMU/odometer using preintegration theory

2022 ◽  
pp. 1-20
Author(s):  
Shiyu Bai ◽  
Jizhou Lai ◽  
Pin Lyu ◽  
Yiting Cen ◽  
Bingqing Wang ◽  
...  

Determination of calibration parameters is essential for the fusion performance of an inertial measurement unit (IMU) and odometer integrated navigation system. Traditional calibration methods are commonly based on the filter frame, which limits the improvement of the calibration accuracy. This paper proposes a graph-optimisation-based self-calibration method for the IMU/odometer using preintegration theory. Different from existing preintegrations, the complete IMU/odometer preintegration model is derived, which takes into consideration the effects of the scale factor of the odometer, and misalignments in the attitude and position between the IMU and odometer. Then the calibration is implemented by the graph-optimisation method. The KITTI dataset and field experimental tests are carried out to evaluate the effectiveness of the proposed method. The results illustrate that the proposed method outperforms the filter-based calibration method. Meanwhile, the performance of the proposed IMU/odometer preintegration model is optimal compared with the traditional preintegration models.

2019 ◽  
Vol 11 (4) ◽  
pp. 442 ◽  
Author(s):  
Zhen Li ◽  
Junxiang Tan ◽  
Hua Liu

Mobile LiDAR Scanning (MLS) systems and UAV LiDAR Scanning (ULS) systems equipped with precise Global Navigation Satellite System (GNSS)/Inertial Measurement Unit (IMU) positioning units and LiDAR sensors are used at an increasing rate for the acquisition of high density and high accuracy point clouds because of their safety and efficiency. Without careful calibration of the boresight angles of the MLS systems and ULS systems, the accuracy of data acquired would degrade severely. This paper proposes an automatic boresight self-calibration method for the MLS systems and ULS systems using acquired multi-strip point clouds. The boresight angles of MLS systems and ULS systems are expressed in the direct geo-referencing equation and corrected by minimizing the misalignments between points scanned from different directions and different strips. Two datasets scanned by MLS systems and two datasets scanned by ULS systems were used to verify the proposed boresight calibration method. The experimental results show that the root mean square errors (RMSE) of misalignments between point correspondences of the four datasets after boresight calibration are 2.1 cm, 3.4 cm, 5.4 cm, and 6.1 cm, respectively, which are reduced by 59.6%, 75.4%, 78.0%, and 94.8% compared with those before boresight calibration.


2013 ◽  
Vol 278-280 ◽  
pp. 1719-1722 ◽  
Author(s):  
Xiao Yu Zhang ◽  
Chun Lei Song

A new scheme of small integrated navigation system based on micro inertial measurement unit (MIMU), global position system (GPS) is presented. The characteristic of these sensors and the structure of system are introduced respectively. The TI high performance floating point DSP TMS320C6713B is used as core processor, which is designed to realize both the data collecting and the navigation calculating. According to the error models of inertial navigation system, an integrated navigation algorithm used Kalman filter is proposed to fuse the information from all of the sensors. The simulation test results show the feasibility of the system design.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2846 ◽  
Author(s):  
Chun-mei Dong ◽  
Shun-qing Ren ◽  
Xi-jun Chen ◽  
Zhen-huan Wang

Inertial Measurement Unit (IMU) calibration accuracy is easily affected by turntable errors, so the primary aim of this study is to reduce the dependence on the turntable’s precision during the calibration process. Firstly, the indicated-output of the IMU considering turntable errors is constructed and with the introduction of turntable errors, the functional relationship between turntable errors and the indicated-output was derived. Then, based on a D-suboptimal design, a calibration method for simultaneously identifying the IMU error model parameters and the turntable errors was proposed. Simulation results showed that some turntable errors could thus be effectively calibrated and automatically compensated. Finally, the theoretical validity was verified through experiments. Compared with the traditional method, the method proposed in this paper can significantly reduce the influence of the turntable errors on the IMU calibration accuracy.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1527
Author(s):  
Jiangtao Zheng ◽  
Sihai Li ◽  
Shiming Liu ◽  
Bofan Guan ◽  
Dong Wei ◽  
...  

The shearer positioning method with an inertial measurement unit and the odometer is feasible in the longwall coal-mining process. However, the positioning accuracy will continue to decrease, especially for the micro-electromechanical inertial measurement unit (MIMU). In order to further improve the positioning accuracy of the shearer without adding other external sensors, the positioning method of the Rauch-Tung-Striebel (RTS) smoother-aided MIMU and odometer is proposed. A Kalman filter (KF) with the velocity and position measurements, which are provided by the odometer and closing path optimal estimation model (CPOEM), respectively, is established. The observability analysis is discussed to study the possible conditions under which the error states of KF can be estimated. A RTS smoother with the above-mentioned KF as the forward filter is built. Finally, the experiments of simulating the movement of the shearer through a mobile carrier were carried out, with a longitudinal movement distance of 44.6 m and a lateral advance distance of 1.2 m. The results show that the proposed method can effectively improve the positioning accuracy. In addition, the odometer scale factor and mounting angles can be estimated in real time.


2008 ◽  
Vol 61 (2) ◽  
pp. 323-336 ◽  
Author(s):  
P. Aggarwal ◽  
Z. Syed ◽  
X. Niu ◽  
N. El-Sheimy

Navigation involves the integration of methodologies and systems for estimating the time varying position and attitude of moving objects. Inertial Navigation Systems (INS) and the Global Positioning System (GPS) are among the most widely used navigation systems. The use of cost effective MEMS based inertial sensors has made GPS/INS integrated navigation systems more affordable. However MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable navigation results. Moreover the performance characteristics of these sensors are highly dependent on the environmental conditions such as temperature variations. Hence there is a need for the development of accurate, reliable and efficient thermal models to reduce the effect of these errors that can potentially degrade the system performance. In this paper, the Allan variance method is used to characterize the noise in the MEMS sensors. A six-position calibration method is applied to estimate the deterministic sensor errors such as bias, scale factor, and non-orthogonality. An efficient thermal variation model is proposed and the effectiveness of the proposed calibration methods is investigated through a kinematic van test using integrated GPS and MEMS-based inertial measurement unit (IMU).


2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2021 ◽  
Author(s):  
Jinghua Zhang ◽  
Rui He ◽  
Jian Wu ◽  
Shuai Li ◽  
Xuesong Chen ◽  
...  

1999 ◽  
Author(s):  
Chunhe Gong ◽  
Jingxia Yuan ◽  
Jun Ni

Abstract Robot calibration plays an increasingly important role in manufacturing. For robot calibration on the manufacturing floor, it is desirable that the calibration technique be easy and convenient to implement. This paper presents a new self-calibration method to calibrate and compensate for robot system kinematic errors. Compared with the traditional calibration methods, this calibration method has several unique features. First, it is not necessary to apply an external measurement system to measure the robot end-effector position for the purpose of kinematic identification since the robot measurement system has a sensor as its integral part. Second, this self-calibration is based on distance measurement rather than absolute position measurement for kinematic identification; therefore the calibration of the transformation from the world coordinate system to the robot base coordinate system, known as base calibration, is not necessary. These features not only greatly facilitate the robot system calibration but also shorten the error propagation chain, therefore, increase the accuracy of parameter estimation. An integrated calibration system is designed to validate the effectiveness of this calibration method. Experimental results show that after calibration there is a significant improvement of robot accuracy over a typical robot workspace.


Sign in / Sign up

Export Citation Format

Share Document