A possible role for stable microtubules in intracellular transport from the endoplasmic reticulum to the Golgi apparatus

1994 ◽  
Vol 107 (5) ◽  
pp. 1321-1331 ◽  
Author(s):  
M. Mizuno ◽  
S.J. Singer

The intracellular transport of secretory proteins involves at an early stage the formation of vesicles from transitional elements of the endoplasmic reticulum (ER) containing these proteins and the transfer of these vesicles to the cis-face of the Golgi apparatus. We propose that the latter transfer process does not occur by random diffusion, but is instead mediated by tracking along stable microtubules. To test this proposal, we have carried out double immunoelectron microscopic labeling experiments on frozen sections of HepG2 hepatoma cells secreting the protein human serum albumin (HSA). By a cycloheximide treatment protocol, the stage during which the transfer of newly synthesized HSA from the ER to the Golgi apparatus occurs in vivo was determined. Sections of the cells were then double immunolabeled using primary antibodies to HSA and to glu-tubulin, the latter specifically detecting stable microtubules. We observed a significantly high frequency of HSA-containing structures between the ER and the Golgi apparatus with which stable microtubules were closely associated. These results support the proposal that stable microtubules may play a critical role in directing the transfer process from the ER to the Golgi apparatus.

1970 ◽  
Vol 47 (3) ◽  
pp. 555-567 ◽  
Author(s):  
Hans Glaumann ◽  
Jan L. E. Ericsson

A comparative biochemical and radioautographic in vivo study was performed to identify the site of synthesis and route of migration of albumin in the parenchymal liver cell after labeling with leucine-14C or leucine-3H via the portal vein. Free cytoplasmic ribosomes, membrane-bound ribosomes, rough- and smooth-surfaced microsomes, and Golgi membranes were isolated. The purity of the Golgi fraction was examined morphologically and biochemically. After administration of leucine-14C, labeled albumin was extracted, and the sequence of transport was followed from one fraction to the other. Approximately 2 min after the intravenous injection, bound ribosomes displayed a maximal rate of leucine-14C incorporation into albumin. 4 min later, a peak was reached for rough microsomes. Corresponding maximal activities for smooth microsomes were recorded at 15 min, and for the Golgi apparatus at ∼20 min. The relative amount of albumin, calculated on a membrane protein basis, was higher in the Golgi fraction than in the microsomes. By radioautography the silver grains were preferentially localized over the rough-surfaced endoplasmic reticulum at the 5 min interval. Apparent activity in the Golgi zone was noted 9 min after the injection; at 15 and 20 min, the majority of the grains were found in this location. Many of the grains associated with the Golgi apparatus were located over Golgi vacuoles containing 300–800 A electron-opaque bodies. It is concluded that albumin is synthesized on bound ribosomes, subsequently is transferred to the cavities of rough-surfaced endoplasmic reticulum, and then undergoes migration to the smooth-surfaced endoplasmic reticulum and the Golgi apparatus. In the latter organelle, albumin can be expected to be segregated together with very low density lipoprotein in vacuoles known to move toward the sinusoidal portion of the cell and release their content to the blood.


2002 ◽  
Vol 22 (3) ◽  
pp. 866-873 ◽  
Author(s):  
Kazuo Nakajima ◽  
Yosuke Takei ◽  
Yosuke Tanaka ◽  
Terunaga Nakagawa ◽  
Takao Nakata ◽  
...  

ABSTRACT KIF1C is a new member of the kinesin superfamily of proteins (KIFs), which act as microtubule-based molecular motors involved in intracellular transport. We cloned full-length mouse kif1C cDNA, which turned out to have a high homology to a mitochondrial motor KIF1Bα and to be expressed ubiquitously. To investigate the in vivo significance of KIF1C, we generated kif1C −/− mice by knocking in the β-galactosidase gene into the motor domain of kif1C gene. On staining of LacZ, we detected its expression in the heart, liver, hippocampus, and cerebellum. Unexpectedly, kif1C −/− mice were viable and showed no obvious abnormalities. Because immunocytochemistry showed partial colocalization of KIF1C with the Golgi marker protein, we compared the organelle distribution in primary lung fibroblasts from kif1C +/+ and kif1C −/− mice. We found that there was no significant difference in the distribution of the Golgi apparatus or in the transport from the Golgi apparatus to the endoplasmic reticulum (ER) facilitated by brefeldin A between the two cells. This retrograde membrane transport was further confirmed to be normal by time-lapse analysis. Consequently, KIF1C is dispensable for the motor-dependent retrograde transport from the Golgi apparatus to the ER.


Author(s):  
James R. Gaylor ◽  
Fredda Schafer ◽  
Robert E. Nordquist

Several theories on the origin of the melanosome exist. These include the Golgi origin theory, in which a tyrosinase-rich protein is "packaged" by the Golgi apparatus, thus forming the early form of the melanosome. A second theory postulates a mitochondrial origin of melanosomes. Its author contends that the melanosome is a modified mitochondria which acquires melanin during its development. A third theory states that a pre-melanosome is formed in the smooth or rough endoplasmic reticulum. Protein aggregation is suggested by one author as a possible source of the melanosome. This fourth theory postulates that the melanosome originates when the protein products of several genetic loci aggregate in the cytoplasm of the melanocyte. It is this protein matrix on which the melanin is deposited. It was with these theories in mind that this project was undertaken.


1984 ◽  
Vol 68 (1) ◽  
pp. 83-94
Author(s):  
C.J. Flickinger

The production, transport, and disposition of material labelled with [3H]mannose were studied in microsurgically enucleated and control amoebae. Cells were injected with the precursor and samples were prepared for electron-microscope radioautography at intervals, up to 24 h later. Control cells showed heavy labelling of the rough endoplasmic reticulum and the Golgi apparatus at early intervals after injection. Later, labelling of groups of small vesicles increased, and the percentage of grains over the cell surface peaked 12 h after administration of the precursor. Two major changes were detected in enucleate amoebae. First, the kinetics of labelling of cell organelles with [3H]mannose were altered in the absence of the nucleus. The Golgi apparatus and cell surface both displayed maximal labelling at later intervals in enucleates, and the percentage of grains over the rough endoplasmic reticulum varied less with time in enucleated than in control cells. Second, the distribution of radioactivity was altered. A greater percentage of grains was associated with lysosomes in enucleates than in control cells. The change in the kinetics of labelling of the endoplasmic reticulum, Golgi apparatus and cell surface indicates that intracellular transport of surface material was slower in the absence of the nucleus. It is suggested that this is related to the decreased motility of enucleate cells.


1969 ◽  
Vol 40 (2) ◽  
pp. 461-483 ◽  
Author(s):  
Olga Stein ◽  
Yechezkiel Stein

Injection of choline-3H into choline-deficient rats resulted in an enhanced incorporation of the label into liver lecithin, as compared to the incorporation of label into liver lecithin of normal rats. The results obtained with the use of different lecithin precursors indicate that in the intact liver cell, both in vivo and in vitro, exchange of choline with phosphatidyl-choline is not significant. The synthesis and secretion of lecithins by the choline-deficient liver compare favorably with the liver of choline-supplemented rats, when both are presented with labeled choline or lysolecithin as lecithin precursors. Radioautography of the choline-deficient liver shows that 5 min after injection of choline-3H the newly synthesized lecithin is found in the endoplasmic reticulum (62%), mitochondria (13%), and at the "cell boundary" (20%). The ratio of the specific activity of microsomal and mitochondrial lecithin, labeled with choline, glycerol, or linoleate, was 1.53 at 5 min after injection, but the ratio of the specific activity of phosphatidyl ethanolamine (PE), labeled with ethanolamine, was 5.3. These results indicate that lecithin and PE are synthesized mainly in the endoplasmic reticulum, and are transferred into mitochondria at different rates. The site of a precursor pool of bile lecithin was studied in the intact rat and in the perfused liver. Following labeling with choline-3H, microsomal lecithin isolated from perfused liver had a specific activity lower than that of bile lecithin, but the specific activity of microsomal linoleyl lecithin was comparable to that of bile lecithin between 30 and 90 min of perfusion. It is proposed that the site of the bile lecithin pool is located in the endoplasmic reticulum and that the pool consists mostly of linoleyl lecithin.


1985 ◽  
Vol 101 (5) ◽  
pp. 1733-1740 ◽  
Author(s):  
A Yamamoto ◽  
R Masaki ◽  
Y Tashiro

The Golgi apparatus mediates intracellular transport of not only secretory and lysosomal proteins but also membrane proteins. As a typical marker membrane protein for endoplasmic reticulum (ER) of rat hepatocytes, we have selected phenobarbital (PB)-inducible cytochrome P-450 (P-450[PB]) and investigated whether P-450(PB) is transported to the Golgi apparatus or not by combining biochemical and quantitative ferritin immunoelectron microscopic techniques. We found that P-450(PB) was not detectable on the membrane of Golgi cisternae either when P-450 was maximally induced by phenobarbital treatment or when P-450 content in the microsomes rapidly decreased after cessation of the treatment. The P-450 detected biochemically in the Golgi subcellular fraction can be explained by the contamination of the microsomal vesicles derived from fragmented ER membranes to the Golgi fraction. We conclude that when the transfer vesicles are formed by budding on the transitional elements of ER, P-450 is completely excluded from such regions and is not transported to the Golgi apparatus, and only the membrane proteins destined for the Golgi apparatus, plasma membranes, or lysosomes are selectively collected and transported.


1989 ◽  
Vol 258 (2) ◽  
pp. 541-545 ◽  
Author(s):  
R Reiter ◽  
R Otter ◽  
A Wendel

Selenium (Se)-deficient mice were labelled in vivo with single pulses of [75Se]selenite, and the intrahepatic distribution of the trace element was studied by subcellular fractionation. At 1 h after intraperitoneal injection of 3.3 or 10 micrograms of Se/kg body weight, 15% of the respective doses were found in the liver. Accumulation in the subcellular fractions followed the order: Golgi vesicular much greater than lysosomal greater than cytosolic = microsomal greater than mitochondrial, peroxisomal, nuclear and plasma-membrane fraction. At a dose of 3.3 micrograms/kg, more than 90% of the hepatic Se was protein-bound. When cross-contamination was accounted for, the following specific Se contents of the subcellular compartments were extrapolated: Golgi apparatus, 7.50 pmol/mg; cytosol, 0.90 pmol/mg; endoplasmic reticulum, 0.80 pmol/mg; mitochondria, 0.49 pmol/mg; nuclei, lysosomes, peroxisomes and plasma membrane, less than 0.4 pmol/mg. At 10 micrograms/kg, a roughly 2-3-fold increase in Se content of all fractions was found without major changes in the intrahepatic distribution pattern. An extraordinary rise in the cytosolic fraction was due to an apparently non-protein-bound Se pool. At 24 h after dosing, total hepatic Se had decreased to 6% of the initial dose and had become predominantly protein-bound. The 60% decrease in hepatic Se was reflected in a similar fall in the subcellular levels of the trace element. The Golgi apparatus still had the highest specific Se content, although accumulation was 5 times less than that after 1 h. The cytosolic pool accounted for 50% of the hepatic Se at both labelling times. After 1 h the Golgi apparatus was, with 19%, the second largest intrahepatic pool, followed by the endoplasmic reticulum with 16%. The high affinity and fast response of the Golgi apparatus to Se supplementation of deficient mice is interpreted in terms of a predominant function of this cell compartment in the processing and the export of Se-proteins from the liver.


1964 ◽  
Vol 20 (3) ◽  
pp. 473-495 ◽  
Author(s):  
Lucien G. Caro ◽  
George E. Palade

The synthesis, intracellular transport, storage, and discharge of secretory proteins in and from the pancreatic exocrine cell of the guinea pig were studied by light- and electron microscopical autoradiography using DL-leucine-4,5-H3 as label. Control experiments were carried out to determine: (a) the length of the label pulse in the blood and tissue after intravenous injections of leucine-H3; (b) the amount and nature of label lost during tissue fixation, dehydration, and embedding. The results indicate that leucine-H3 can be used as a label for newly synthesized secretory proteins and as a tracer for their intracellular movements. The autoradiographic observations show that, at ∼5 minutes after injection, the label is localized mostly in cell regions occupied by rough surfaced elements of the endoplasmic reticulum; at ∼20 minutes, it appears in elements of the Golgi complex; and after 1 hour, in zymogen granules. The evidence conclusively shows that the zymogen granules are formed in the Golgi region by a progressive concentration of secretory products within large condensing vacuoles. The findings are compatible with an early transfer of label from the rough surfaced endoplasmic reticulum to the Golgi complex, and suggest the existence of two distinct steps in the transit of secretory proteins through the latter. The first is connected with small, smooth surfaced vesicles situated at the periphery of the complex, and the second with centrally located condensing vacuoles.


1977 ◽  
Vol 74 (2) ◽  
pp. 399-413 ◽  
Author(s):  
AR Hand ◽  
C Oliver

The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.


2021 ◽  
Author(s):  
Dinh Thi Nguyen ◽  
Thuong Manh Le ◽  
Tsuyoshi Hattori ◽  
Mika Takarada-Iemata ◽  
Hiroshi Ishii ◽  
...  

AbstractWhile ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of ATF6β is largely unknown. Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin, a molecular chaperone in the ER with a high Ca2+-binding capacity. Calreticulin expression was reduced to ~50% in the central nervous system of Atf6b−/− mice, and restored by ATF6β. Analysis using cultured hippocampal neurons revealed that ATF6β deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death, which was rescued by ATF6β, calreticulin, Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in hippocampi of Atf6b−/− and Calr+/− mice, and restored by 2-APB and salubrinal. These results suggest that the ATF6β-calreticulin axis plays a critical role in the neuronal survival by improving Ca2+ homeostasis under ER stress.


Sign in / Sign up

Export Citation Format

Share Document