Preparation of High-Rigidity, High-Toughness Unplasticized Poly(vinyl Chloride) for Plastic Windows Profiles Reinforced and Toughened by Nano-CaCO3

2011 ◽  
Vol 71-78 ◽  
pp. 1237-1241
Author(s):  
Ming Shan Yang ◽  
Lin Kai Li

The organic-inorganic complex nano-particles with core-shell structure were synthesized by in situ emulsion polymerization based on fresh slush pulp of calcium carbonate (CaCO3) nanoparticles and acrylate polymer in this paper. The dispersion and encapsulation of nanoparticles were investigated by transmission electron microscopy (TEM). Unplasticized poly(vinyl chloride)(UPVC) was modified by organic-inorganic complex nanoparticles and the effects of toughening and reinforcing were systematically studied. The results showed that the effects of the reinforcement and toughening of organic-inorganic complex nanoparticles on UPVC were very significant. Especially, scanning electron microscopy(SEM) analysis results indicated that large-fiber drawing and network morphologies coexisted in the system of UPVC by joint modification of nanoparticles with CPE.

Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 172 ◽  
Author(s):  
Eda Aydogan ◽  
Connor Rietema ◽  
Ursula Carvajal-Nunez ◽  
Sven Vogel ◽  
Meimei Li ◽  
...  

Ferritic alloys are important for nuclear reactor applications due to their microstructural stability, corrosion resistance, and favorable mechanical properties. Nanostructured ferritic alloys having a high density of Y-Ti-O rich nano-oxides (NOs < 5 nm) are found to be extremely stable at high temperatures up to ~1100 °C. This study serves to understand the effect of a high density of nano-particles on texture evolution and recrystallization mechanisms in ferritic alloys of 14YWT (14Cr-3W-0.4Ti-0.21Y-Fe wt %) having a high density of nano-particles and dispersion-free FeCrAl (13Cr-5.2Al-0.05Y-2Mo-0.2Si-1Nb wt %). In order to investigate the recrystallization mechanisms in these alloys, neutron diffraction, electron backscattered diffraction, and in situ and ex situ transmission electron microscopy have been utilized. It has been observed that even though the deformation textures of both the 14YWT and FeCrAl alloys evolved similarly, resulting in either the formation (in FeCrAl alloy) or increase (in 14YWT) in γ-fiber texture, the texture evolution during recrystallization is different. While FeCrAl alloy keeps its γ-fiber texture after recrystallization, 14YWT samples develop a ε-fiber as a result of annealing at 1100 °C, which can be attributed to the existence of NOs. In situ transmission electron microscopy annealing experiments on 14YWT show the combination and growth of the lamellar grains rather than nucleation; however, the recrystallization and growth kinetics are slower due to NOs compared to FeCrAl.


2003 ◽  
Vol 792 ◽  
Author(s):  
Nan Jiang

ABSTRACTElectron irradiation-induced modifications in two glasses, K2O – SiO2 and Au doped Na2O – B2O3 – SiO2, were observed in electron microscope. The products of modifications were “nano-particle” like contrasts in transmission electron microscopy (TEM) images, which can be easily confused with real nano-particles and phase separation. The driving force for the modifications in the glasses is the tendency of elimination of non-bridging oxygen (NBO) through the removal of cations. The phase separation into cation rich and poor region is their nature under electron irradiation. Therefore, it is absolutely essential to record in situ frames when the TEM images are used to provide microstructure information of glasses. Additionally, charging effects in glasses have also been discussed.


2008 ◽  
Vol 58 ◽  
pp. 163-167
Author(s):  
Ming Shan Yang ◽  
Ying Quan

The nano-CaCO3/polyacrylate core-shell inorganic-organic complex nano-particles were prepared by in situ emulsion polymerization based on fresh slush pulp of calcium carbonate (CaCO3) nanoparticles in this paper. The dispersion and encapsulation of nanoparticles were investigated by transmission electron microscopy (TEM) and electron spectroscopy for chemical analysis(ESCA). The results showed that in the presence of nano-CaCO3 particles, the in situ emulsion polymerization of acrylates was carried out smoothly, and polyacrylates successfully encapsulated on the surface of nano-CaCO3.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Sign in / Sign up

Export Citation Format

Share Document