The National Center for Electron Microscopy at Berkeley: An Update

Author(s):  
K. H. Westmacott ◽  
U. Dahmen

Since its establishment in 1984 the National Center for Electron Microscopy (NCEM) has provided a wide variety of users with advanced electron microscopy facilities for microstructural characterization. It has, in addition continued to develop and improve its resources to expand the range of features available to users.A major effort has been expended in building up a comprehensive computing facility to assist microscopists in optimizing instrument performance and extracting the maximum information from experimental data. The best currently available hardware has been assembled and a long menu of user-friendly software programs have been developed for general use. Sophisticated image simulation and image enhancement programs provide users of the Atomic Resolution Microscope all the necessary information for the correct interpretation of high resolution images. Direct links to both the ARM and the 1.5 MeV Kratos HVEM allow Fast Fourier Transforms to be performed, producing on-line diffractograms and greatly facilitating the effective and efficient use of the microscopes.

Author(s):  
J. A. Eades

For well over two decades computers have played an important role in electron microscopy; they now pervade the whole field - as indeed they do in so many other aspects of our lives. The initial use of computers was mainly for large (as it seemed then) off-line calculations for image simulations; for example, of dislocation images.Image simulation has continued to be one of the most notable uses of computers particularly since it is essential to the correct interpretation of high resolution images. In microanalysis, too, the computer has had a rather high profile. In this case because it has been a necessary part of the equipment delivered by manufacturers. By contrast the use of computers for electron diffraction analysis has been slow to prominence. This is not to say that there has been no activity, quite the contrary; however it has not had such a great impact on the field.


1987 ◽  
Vol 91 ◽  
Author(s):  
C.B. Carter ◽  
N.-H. Cho ◽  
S. Mckernan ◽  
D.K. Wagner

ABSTRACTAntiphase boundaries are observed in epilayers of GaAs grown by organometallic vapor phase epitaxy on Ge substrates and are then invariably found to show a tendency to facet. Stacking-fault-like fringes caused by the translation of adjacent grains give the information on the relative displacement of the two grains at these interfaces and show that this translation does not have a fixed magnitude for a particular interface but varies with the orientation of the interface. Preferred orientations of the antiphase boundaries and the rigid-body translations have been studied using transmission electron microscopy. Interactions between antiphase boundaries and interfaces have been examined here in heterolayer structures consisting of alternating layers of GaAs and AlxGal−xAs grown on an (001) Ge substrate. The possibility of using atomic-resolution imaging to investigate the atomic structure of APBs is illustrated and the images are compared with those predicted by image simulation.


1983 ◽  
Vol 31 ◽  
Author(s):  
K. J. Morrissey ◽  
Z. Elgat ◽  
Y. Kouh ◽  
C. B. Carter

ABSTRACTHigh resolution transmission electron microscopy (HRTEM) has been used to study structures found in secondphase particles in commercial alumina compacts. Analytical electron microscopy has been used to identify elements present in the particles. Computer image simulation has been used for both the structural interpretation of high resolution images and predicting the effect which the presence of other elements would have on the observed structures.


Author(s):  
M. Kelly ◽  
D.M. Bird

It is well known that strain fields can have a strong influence on the details of HREM images. This, for example, can cause problems in the analysis of edge-on interfaces between lattice mismatched materials. An interesting alternative to conventional HREM imaging has recently been advanced by Pennycook and co-workers where the intensity variation in the annular dark field (ADF) detector is monitored as a STEM probe is scanned across the specimen. It is believed that the observed atomic-resolution contrast is correlated with the intensity of the STEM probe at the atomic sites and the way in which this varies as the probe moves from cell to cell. As well as providing a directly interpretable high-resolution image, there are reasons for believing that ADF-STEM images may be less suseptible to strain than conventional HREM. This is because HREM images arise from the interference of several diffracted beams, each of which is governed by all the excited Bloch waves in the crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
W. Chiu ◽  
M.F. Schmid ◽  
T.-W. Jeng

Cryo-electron microscopy has been developed to the point where one can image thin protein crystals to 3.5 Å resolution. In our study of the crotoxin complex crystal, we can confirm this structural resolution from optical diffractograms of the low dose images. To retrieve high resolution phases from images, we have to include as many unit cells as possible in order to detect the weak signals in the Fourier transforms of the image. Hayward and Stroud proposed to superimpose multiple image areas by combining phase probability distribution functions for each reflection. The reliability of their phase determination was evaluated in terms of a crystallographic “figure of merit”. Grant and co-workers used a different procedure to enhance the signals from multiple image areas by vector summation of the complex structure factors in reciprocal space.


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


Author(s):  
W.J. de Ruijter ◽  
Peter Rez ◽  
David J. Smith

Digital computers are becoming widely recognized as standard accessories for electron microscopy. Due to instrumental innovations the emphasis in digital processing is shifting from off-line manipulation of electron micrographs to on-line image acquisition, analysis and microscope control. An on-line computer leads to better utilization of the instrument and, moreover, the flexibility of software control creates the possibility of a wide range of novel experiments, for example, based on temporal and spatially resolved acquisition of images or microdiffraction patterns. The instrumental resolution in electron microscopy is often restricted by a combination of specimen movement, radiation damage and improper microscope adjustment (where the settings of focus, objective lens stigmatism and especially beam alignment are most critical). We are investigating the possibility of proper microscope alignment based on computer induced tilt of the electron beam. Image details corresponding to specimen spacings larger than ∼20Å are produced mainly through amplitude contrast; an analysis based on geometric optics indicates that beam tilt causes a simple image displacement. Higher resolution detail is characterized by wave propagation through the optical system of the microscope and we find that beam tilt results in a dispersive image displacement, i.e. the displacement varies with spacing. This approach is valid for weak phase objects (such as amorphous thin films), where transfer is simply described by a linear filter (phase contrast transfer function) and for crystalline materials, where imaging is described in terms of dynamical scattering and non-linear imaging theory. In both cases beam tilt introduces image artefacts.


Sign in / Sign up

Export Citation Format

Share Document