The relevance of local lattice parameter measurements using CBED

Author(s):  
Hamish L. Fraser

Since the development of transmission electron microscopes in which the electron beam may be caused to be incident on the sample in the form of a convergent probe, much work has been aimed at the use of convergent beam electron diffraction (CBED) in materials science. One of the techniques afforded by CBED permits the measurement of lattice parameters on a scale more or less defined by the diameter of the probe at the sample, and so a powerful means of determining local distortions has become available. While this technique appears to be very exciting, as is shown below, the necessary use of thin foils results in the possibility of surface relaxations modifying the stress fields of a given distortion, and this raises the question of the relevance of measurements made in thin foils to the physical situation in the bulk. This question is the subject of this paper.

1993 ◽  
Vol 1 (4) ◽  
pp. 6-10
Author(s):  
Stephen E. Rice

Great strides have been made in the last decade in high resolution transmission electron microscopes (TEMs) which can also provide elemental information via energy dispersive X-ray analysis (EDX) or energy loss spectroscopy (EELS), and proponents of various TEM techniques make bold claims. Convergent beam elecjron diffraction and microdifff action shine as techniques for defect structure analysis and means for solving crystal structures. The spectroscopies can now be used to map chemical state information at a level which until recently might be encountered in science fiction. As a pure imaging device, electron holography holds great promise for providing Ehe ultimate (would you believe 0.1Å?) imaging resolution. Although conventional TEMs will never approach this, it appears that we are learning more and more about less and less, until we will soon know everything there is to know about nothing.


Author(s):  
G. Lehmpfuhl ◽  
P. J. Smith

Specimens being observed with electron-beam instruments are subject to contamination, which is due to polymerization of hydrocarbon molecules by the beam. This effect becomes more important as the size of the beam is reduced. In convergent-beam studies with a beam diameter of 100 Å, contamination was observed to grow on samples at very high rates. Within a few seconds needles began forming under the beam on both the top and the underside of the sample, at growth rates of 400-500 Å/s, severely limiting the time available for observation. Such contamination could cause serious difficulty in examining a sample with the new scanning transmission electron microscopes, in which the beam is focused to a few angstroms.We have been able to reduce the rate of contamination buildup by a combination of methods: placing an anticontamination cold trap in the sample region, preheating the sample before observation, and irradiating the sample with a large beam before observing it with a small beam.


Author(s):  
John F. Mansfield

One of the most important advancements of the transmission electron microscopy (TEM) in recent years has been the development of the analytical electron microscope (AEM). The microanalytical capabilities of AEMs are based on the three major techniques that have been refined in the last decade or so, namely, Convergent Beam Electron Diffraction (CBED), X-ray Energy Dispersive Spectroscopy (XEDS) and Electron Energy Loss Spectroscopy (EELS). Each of these techniques can yield information on the specimen under study that is not obtainable by any other means. However, it is when they are used in concert that they are most powerful. The application of CBED in materials science is not restricted to microanalysis. However, this is the area where it is most frequently employed. It is used specifically to the identification of the lattice-type, point and space group of phases present within a sample. The addition of chemical/elemental information from XEDS or EELS spectra to the diffraction data usually allows unique identification of a phase.


Author(s):  
J W Steeds

That the techniques of convergent beam electron diffraction (CBED) are now widely practised is evident, both from the way in which they feature in the sale of new transmission electron microscopes (TEMs) and from the frequency with which the results appear in the literature: new phases of high temperature superconductors is a case in point. The arrival of a new generation of TEMs operating with coherent sources at 200-300kV opens up a number of new possibilities.First, there is the possibility of quantitative work of very high accuracy. The small probe will essentially eliminate thickness or orientation averaging and this, together with efficient energy filtering by a doubly-dispersive electron energy loss spectrometer, will yield results of unsurpassed quality. The Bloch wave formulation of electron diffraction has proved itself an effective and efficient method of interpreting the data. The treatment of absorption in these calculations has recently been improved with the result that <100> HOLZ polarity determinations can now be performed on III-V and II-VI semiconductors.


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
W. T. Pike

With the advent of crystal growth techniques which enable device structure control at the atomic level has arrived a need to determine the crystal structure at a commensurate scale. In particular, in epitaxial lattice mismatched multilayers, it is of prime importance to know the lattice parameter, and hence strain, in individual layers in order to explain the novel electronic behavior of such structures. In this work higher order Laue zone (holz) lines in the convergent beam microdiffraction patterns from a thermal emission transmission electron microscope (TEM) have been used to measure lattice parameters to an accuracy of a few parts in a thousand from nanometer areas of material.Although the use of CBM to measure strain using a dedicated field emission scanning transmission electron microscope has already been demonstrated, the recording of the diffraction pattern at the required resolution involves specialized instrumentation. In this work, a Topcon 002B TEM with a thermal emission source with condenser-objective (CO) electron optics is used.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


1991 ◽  
Vol 243 ◽  
Author(s):  
Jhing–Fang Chang ◽  
Chi Kong Kwok ◽  
Seshu B. Desu

AbstractBoth La and Nd–doped PZT, i.e., PLZT and PNZT, ferroelectric thin films were prepared by the metalorganic deposition (MOD) process. The precursor solutions used were derived from lead acetate, lanthanum acetylacetonate, neodymium acetate, zirconium n–propoxide, and titanium iso–propoxide. The dopant concentration of the films analyzed by electron microprobe indicated a one–to–one correspondence between film composition and the composition of the precursor from which the film was made. In this study, the effects of Nd and La dopants in PZT films on Curie temperature was determined by in–situ hot–stage TEM and compared with those of bulk materials. Lattice parameter and phase transformation were determined by both X–ray and electron diffraction. Our observations were: (1) Curie temperature decreases with increasing dopant concentration for both thin foils and bulk ceramics, (2) for a given dopant concentration, Curie temperature and crystal tetragonality of PNZT thin foils is lower than those of PLZT samples, (3) Curie temperature of thin foils was found to be less than those of the corresponding bulk materials, and (4) ferroelectric domains is easily observed in both PLZT and PNZT TEM specimens prepared by the spin–coating method.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

Metal silicides have found increasing use in microelectronic industry as contact material as well as interconnect between devices. Silicide formation is based on the reaction between metal film and substrate silicon. Thermal, laser, electron beam and ion-mixing induced silicide formation have been widely studied. Recently both scanning and pulsed ion beams have been used to anneal semiconductors. In this presentation, we report pulsed ion beam induced silicide formation.Ni films, 300 and 400 Å thick, were e-gun deposited on (001) oriented, 2 Ω-cm, n-type silicon with substrate temperature maintained at 150°C. A magnetically insulated diode driven by a Marx generator, constructed and run by J. Neri and D. Hammer of Laboratory for Plasma Studies at Cornell in conjunction with J. E. E. Baglin of IBM Research was used to produce pulsed proton and barium beams. Samples were irradiated with about 200 nsec, 200-300 keV, 10-100 A/cm2 ion pulses. A Gaussian-type radial profile was generally obtained. Thin foils for transmission electron microscope study were then chemically polished from silicon side. JEOL 100B and Siemens 102 electron microscopes were used to investigate microstructural changes.


Sign in / Sign up

Export Citation Format

Share Document