Transmission Electron Microscopy Study of Mod Plzt and Pnzt Thin Films

1991 ◽  
Vol 243 ◽  
Author(s):  
Jhing–Fang Chang ◽  
Chi Kong Kwok ◽  
Seshu B. Desu

AbstractBoth La and Nd–doped PZT, i.e., PLZT and PNZT, ferroelectric thin films were prepared by the metalorganic deposition (MOD) process. The precursor solutions used were derived from lead acetate, lanthanum acetylacetonate, neodymium acetate, zirconium n–propoxide, and titanium iso–propoxide. The dopant concentration of the films analyzed by electron microprobe indicated a one–to–one correspondence between film composition and the composition of the precursor from which the film was made. In this study, the effects of Nd and La dopants in PZT films on Curie temperature was determined by in–situ hot–stage TEM and compared with those of bulk materials. Lattice parameter and phase transformation were determined by both X–ray and electron diffraction. Our observations were: (1) Curie temperature decreases with increasing dopant concentration for both thin foils and bulk ceramics, (2) for a given dopant concentration, Curie temperature and crystal tetragonality of PNZT thin foils is lower than those of PLZT samples, (3) Curie temperature of thin foils was found to be less than those of the corresponding bulk materials, and (4) ferroelectric domains is easily observed in both PLZT and PNZT TEM specimens prepared by the spin–coating method.

2001 ◽  
Vol 7 (S2) ◽  
pp. 558-559
Author(s):  
K.M. Jones ◽  
Y. Yan ◽  
F.S. Hasoon ◽  
M.M. Al-Jassim

Polycrystalline CdTe is a promising candidate for solar cells due to its nearly ideal band-gap, high absorption coefficient, and ease of film fabrication. Small-area CdTe/CdS cells with efficiencies of 16.0% have been demonstrated. The structure of a typical CdTe/CdS solar cell (Figure 1) consists of a glass superstrate, on which a thin layer of SnO2 is deposited (front contact), n-type CdS, p-type CdTe, and a back contact. Prior to applying the back contact to the CdTe, etching of the CdTe surface using a mixture of nitric and phosphoric (NP) acids is normally needed. It is known that the etching depletes a crystalline CdTe surface of Cd and creates a Te-rich layer. Two effects of the Te-rich layer has been proposed, namely, forming a Te-CdTe low-series-resistance contact and improving CdTe device stability by the gettering of Cu. Thus, the NP etching is an important process in the CdTe device fabrication. in this paper, we report on transmission electron microscopy (TEM) study of the microstructure of the surface of NP etched CdTe thin films.


1990 ◽  
Vol 209 ◽  
Author(s):  
Y. Gao ◽  
K. L. Merkle ◽  
H. L. M. Chang ◽  
T. J. Zhang ◽  
D. J. Lam

ABSTRACTTiO2 thin films grown on (1120) sapphire at 800°C by the MOCVD technique have been characterized by transmission electron microscopy. The TiO2 thin films are single crystalline and have the rutile structure. The epitaxial orientation relationship between the TiO2 thin films (R) and the substrate (S) has been foundto be: (101)[010]R║(1l20)[0001]s. Growth twins in the films are commonly observed with the twin plane{101} and twinning direction <011>. Detailed atomic structures of the twin boundaries and TiO2/α-Al203 interfaces have been investigated by highresolution electron microscopy (HREM).When the interfaces are viewed in the direction of [010]R/[000l]S, the interfaces are found to be structurally coherent in the direction of [1Ol]R/[1100]s,in which the lattice mismatch at the interfaces is about 0.5%.


2008 ◽  
Vol 14 (5) ◽  
pp. 433-438 ◽  
Author(s):  
Daniel Biggemann ◽  
Marcelo H. Prado da Silva ◽  
Alexandre M. Rossi ◽  
Antonio J. Ramirez

AbstractCrystalline properties of synthetic nanostructured hydroxyapatite (n-HA) were studied using high-resolution transmission electron microscopy. The focal-series-restoration technique, obtaining exit-plane wavefunction and spherical aberration-corrected images, was successfully applied for the first time in this electron-beam-susceptible material. Multislice simulations and energy dispersive X-ray spectroscopy were also employed to determine unequivocally that n-HA particles of different size preserve stoichiometric HA-like crystal structure. n-HA particles with sizes of twice the HA lattice parameter were found. These results can be used to optimize n-HA sinterization parameters to improve bioactivity.


Sign in / Sign up

Export Citation Format

Share Document