Ultrastructural organization of the basal lamina in insect Malpighian tubules

Author(s):  
J.S. Ryerse

Relatively little is known about the structure or function of the basal lamina in insect cells. I report here the ultrastructural organization of the basal lamina in Malpighian tubule yellow region primary cells of larval stage skipper butterflies (Calpodes ethlius). The Malpighian tubules selectively filter the blood and produce a primary urine which flows down the tubule lumen into the alimentary canal for excretion. The basal lamina provides the only barrier between the Malpighian tubule cells and the blood which freely circulates within the open body cavity and it may therefore regulate which molecules and ions gain access to the tubule cells. As a first step in these studies on the structure, composition and function of the basal lamina in insect cells the ultrastructure of the basal lamina in Calpodes Malpighian tubules after conventional TEM tissue processing and poststaining has been compared with that observed following en bloc staining with a variety of electron dense stains and probes with specificity for basal lamina components.

1987 ◽  
Vol 88 (2) ◽  
pp. 251-265 ◽  
Author(s):  
H.B. Skaer ◽  
S.H. Maddrell ◽  
J.B. Harrison

This paper describes the structural characteristics and permeability properties of the smooth septate junctions between the upper Malpighian tubule cells of a blood-sucking bug, Rhodnius prolixus. The permeability of the paracellular route was tested only for solutes that could be demonstrated not to cross the epithelium via the cellular route. The intercellular clefts were readily permeated by sucrose, inulin and polyethylene glycol (PEG), showing a higher permeability to molecules of smaller radius (PEG versus sucrose). Negatively charged molecules permeated the clefts more readily than positively charged ones. The effects of pH, urea and luminal flow rate on permeability were studied. The results are discussed in relation to the physiological tightness of the Malpighian tubules to certain solutes and to its function as an excretory epithelium.


2002 ◽  
Vol 205 (11) ◽  
pp. 1645-1655 ◽  
Author(s):  
Juan P. Ianowski ◽  
Robert J. Christensen ◽  
Michael J. O'Donnell

SUMMARYIntracellular ion activities (aion) and basolateral membrane potential (Vbl) were measured in Malpighian tubule cells of Rhodnius prolixus using double-barrelled ion-selective microelectrodes. In saline containing 103mmoll-1Na+, 6mmoll-1 K+ and 93mmoll-1Cl-, intracellular ion activities in unstimulated upper Malpighian tubules were 21, 86 and 32mmoll-1, respectively. In serotonin-stimulated tubules, aCl was unchanged, whereas aNa increased to 33mmoll-1 and aK declined to 71mmoll-1. Vbl was -59mV and -63mV for unstimulated and stimulated tubules, respectively. Calculated electrochemical potentials(Δμ/F) favour passive movement of Na+ into the cell and passive movement of Cl- out of the cell in both unstimulated and serotonin-stimulated tubules. Passive movement of K+ out of the cell is favoured in unstimulated tubules. In stimulated tubules, Δμ/F for K+ is close to 0 mV.The thermodynamic feasibilities of Na+-K+-2Cl-, Na+-Cl-and K+-Cl- cotransporters were evaluated by calculating the net electrochemical potential (Δμnet/F) for each transporter. Our results show that a Na+-K+-2Cl- or a Na+-Cl- cotransporter but not a K+-Cl- cotransporter would permit the movement of ions into the cell in stimulated tubules. The effects of Ba2+ and ouabain on Vbl and rates of fluid and ion secretion show that net entry of K+ through ion channels or the Na+/K+-ATPase can be ruled out in stimulated tubules. Maintenance of intracellular Cl- activity was dependent upon the presence of both Na+ and K+ in the bathing saline. Bumetanide reduced the fluxes of both Na+ and K+. Taken together, the results support the involvement of a basolateral Na+-K+-2Cl- cotransporter in serotonin-stimulated fluid secretion by Rhodnius prolixus Malpighian tubules.


Genetics ◽  
2020 ◽  
Vol 214 (2) ◽  
pp. 235-264 ◽  
Author(s):  
Erez Cohen ◽  
Jessica K. Sawyer ◽  
Nora G. Peterson ◽  
Julian A. T. Dow ◽  
Donald T. Fox

The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell–based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.


1988 ◽  
Vol 137 (1) ◽  
pp. 265-276 ◽  
Author(s):  
S. H. Maddrell ◽  
J. A. Overton

Ouabain, at all concentrations higher than 2 × 10(−7) mol l-1, stimulates the rate at which the Malpighian tubules of the insect, Rhodnius, transport sodium ions and fluid into the lumen. An effect on paracellular movement of sodium ions is unlikely because ouabain makes the electrical potential of the lumen more positive, which would slow diffusion of sodium into the lumen. Radioactive ouabain binds to the haemolymph-facing sides of the tubule cells but not to the luminal face. This binding is reduced in the presence of elevated levels of potassium or of non-radioactive ouabain. Bound ouabain is only slowly released on washing in ouabain-free saline. The evidence suggests that there is a Na+/K+-ATPase on the outer (serosal) membranes of the tubules. Such a pump would transport sodium in a direction opposed to the flow of ions and water involved in fluid transport; poisoning it with ouabain would remove this brake, and fluid flow and sodium transport would increase, as observed.


1998 ◽  
Vol 201 (24) ◽  
pp. 3411-3418
Author(s):  
J. A. Riegel ◽  
S. H. P. Maddrell ◽  
R. W. Farndale ◽  
F. M. Caldwell

External application of the 3',5'-cyclic monophosphates of inosine,cytidine, uridine and thymidine stimulated the fluid secretion rate (FSR)of Malpighian tubules isolated from Drosophila melanogaster. The evidence suggested that the cyclic nucleotides acted intracellularly in some capacity. Receptors of the 'purinergic' type appeared not to be major contributors to fluid secretion; of three purinergic agonists tried,adenosine, adenosine 5'-monophosphate (AMP) and adenosine 5'-triphosphate(ATP), only adenosine had an effect, but this was not observed consistently. None of the purinergic agonists interfered with the stimulation of the FSR by adenosine 3',5'-cyclic monophosphate (cAMP). The maximum stimulation of the fluid-secretion rate by any cyclic nucleotide was approximately double the unstimulated (control) rate. Tubules stimulated to less than maximal FSR by one cyclic nucleotide could be stimulated maximally by an appropriate concentration of another cyclic nucleotide. Malpighian tubules bathed in solutions that contained either[3H]cAMP or [3H]cGMP accumulated radioactivity to a level many times that in the medium. Accumulation of radioactivity by tubules bathed in 430 nmol l-1 [3H]cAMP was suppressed by 1 mmol l-1 non-radioactive cyclic nucleotides in the order cAMP>>cGMP>cIMP>cCMP; neither cTMP nor cUMP suppressed the accumulation of [3H]cAMP. Approximately 35 % of the[3H]cAMP and 80 % of the [3H]cGMP that entered the Malpighian tubule cells was metabolised to compounds that were not identified. It was concluded that cyclic nucleotides enter the Malpighian tubule cells by at least one transport mechanism which is particularly sensitive to purine-based nucleotides.


1971 ◽  
Vol 49 (8) ◽  
pp. 1185-1191 ◽  
Author(s):  
J. R. Byers

The perirectal Malpighian tubules of T. molitor are highly specialized for ion and fluid transport. Although they survive metamorphosis, being similar in structure and function in both larva and adult, they undergo a sequence of dramatic alterations in subcellular organization. In the early stages of metamorphosis there is a phase of dedifferentiation during which the perirectal tubule cells undergo degenerative changes. The highly specialized brush border, which in the larva is formed of closely packed microvilli containing mitochondria, is partially broken down and a large number of mitochondria undergo autophagic isolation and digestion. A conspicuous result of the autophagic processes is the accumulation of membrane lipid within autophagic vacuoles which are eventually transformed into 'osmiophilic bodies.' During the later stages of metamorphosis the cells progressively redifferentiate and the brush border is reconstituted. The number of osmiophilic bodies declines markedly, concomitant with an apparent increase in the number of mitochondria.


Author(s):  
Brendan Clifford

An ultrastructural investigation of the Malpighian tubules of the fourth instar larva of Culex pipiens was undertaken as part of a continuing study of the fine structure of transport epithelia.Each of the five Malpighian tubules was found to be morphologically identical and regionally undifferentiated. Two distinct cell types, the primary and stellate, were found intermingled along the length of each tubule. The ultrastructure of the stellate cell was previously described in the Malpighian tubule of the blowfly, Calliphora erythrocephala by Berridge and Oschman.The basal plasma membrane of the primary cell is extremely irregular, giving rise to a complex interconnecting network of basal channels. The compartments of cytoplasm entrapped within this system of basal infoldings contain mitochondria, free ribosomes, and small amounts of rough endoplasmic reticulum. The mitochondria are distinctive in that the cristae run parallel to the long axis of the organelle.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


1997 ◽  
Vol 200 (17) ◽  
pp. 2363-2367 ◽  
Author(s):  
M C Quinlan ◽  
N J Tublitz ◽  
M J O'Donnell

Rhodnius prolixus eliminates NaCl-rich urine at high rates following its infrequent but massive blood meals. This diuresis involves stimulation of Malpighian tubule fluid secretion by diuretic hormones released in response to distention of the abdomen during feeding. The precipitous decline in urine flow that occurs several hours after feeding has been thought until now to result from a decline in diuretic hormone release. We suggest here that insect cardioacceleratory peptide 2b (CAP2b) and cyclic GMP are part of a novel mechanism of anti-diuresis. Secretion rates of 5-hydroxytryptamine-stimulated Malpighian tubules are reduced by low doses of CAP2b or cyclic GMP. Maximal secretion rates are restored by exposing tubules to 1 mmol l-1 cyclic AMP. Levels of cyclic GMP in isolated tubules increase in response to CAP2b, consistent with a role for cyclic GMP as an intracellular second messenger. Levels of cyclic GMP in tubules also increase as urine output rates decline in vivo, suggesting a physiological role for this nucleotide in the termination of diuresis.


Sign in / Sign up

Export Citation Format

Share Document